$$
\begin{aligned}
& \text { QUEAUOF WATER } \\
& \text { ANNUAL REPORT } \\
& \text { PHILADELPHIA } \\
& \overline{1891}
\end{aligned}
$$

This is a reproduction of a library book that was digitized by Google as part of an ongoing effort to preserve the information in books and make it universally accessible.

NINTIETH ANNUAL REPORT

OP THE
 BUREAU OF WATER,

For the year ending December 31, 1891, AND

FIRST ANNUAL MESSAGE

of

EDWIN S. STUART,

Mayor of the City of Philadelphia, WITH

ANNUAL REPORT
 OF

James H. Windrim,

Director of the Department of Public Works,

ISSUED BY THE CITY OF PHILADELPHIA, 1892.

1892.

PHILADELPHIA:
Duklap \& Clakef, Printers \& Binders, Nos. 1806-8-10 Filbert st.

48887

Digitized by GOOgle

 ANNUAL MESSAGE.

Offioe of the Mayor, City Hall.
Philadelphia, April 4, 1892.

To the Select and Common Councils of the City of Philadrlpita.

Grntlemen :-In accordance with the Act of Assembly approved June 1, 1885, entitled "An Act to provide for the better government of Cities of the first class in this Commonwealth," I have the honor to herewith transmit to your Honorable Bodies my First Annual Message upon the finances and general condition of the affairs of the City.

On Monday, April 6, 1891, I took the oath and assumed the office of Mayor of the City of Philadelphia, and thereupon appointed Mr. George Roney, Director of the Department of Public Safety, and Mr. James H. Windrim, Director of the Department of Public Works; the President and Members of the Board of Directors of the Department of Charities and Correction having been appointed by my distinguished predecessor for a term of five years, in accordance with the above Act, were continued in office.

On September 4, 1891, Mr. George Roney resigned the office of Director of the Department of Public Safety, and I appointed Mr. John Lamon, the then Superintendent of Police, as Acting Director of the Department, ad interim, and on October, 1,1891 , I appointed as the Director the present incumbent, Abraham M. Beitler, Esq.

Finances.

I was met at the very commencement of my term. of oflce with a financial calamity such as none of my predecessors had ever experienced. In consequence the greater part of my first official year has been taken up with complications growing out of the condition of affairs in the Department of City Treasurer, under the incumbency of John Bardsley.

On March 20, 1891, the Keystone National Bank, one of the active depositories of the City, suspended payment and closed its doors, the City having there then on deposit $\$ 441,554.32$, this at a time when a Committee of your Honorable Bodies had been in active examination and investigation of the administration of the Department of City Treasurer. The mal-administration of that Department had placed the financial affairs of the City in such a complicated and critical condition, that I deemed it my duty to appoint, under the authority in me vested by Section 1 of the above Act, a Committee of three competent persons to examine the accounts of that Department, and on May 21, 1891, I appointed such a Committee, consisting of Messrs. Taylor Faunce, Lawrence E. Brown and John S. Kuen. On the same day John Bardsley resigned his office. On May 23, 1891, the members of the above Committee made affidavit to the fact that they had discovered a misappropriation of public moneys by John Bardsley, and immediately a warrant was issued; that evening he was placed under arrest, and, subsequently, pleading guilty, was sentenced to imprisonment. On May 8, 1891, the Spring Garden National Bank, which was also a City depository, suspended payment and closed its doors, holding $\$ 148,402.25$ of the City's money. On May 26, 1891, Mr. John S. Kuen, one of the members of the above Committee, owing to the pressure of private duties, resigned his position. As his successor, I appointed Thomas W. Barlow, Esq., a member of the Philadelphia Bar, who continued to act until the Committee had completed its labors and made its final report, which final re-
port was transmitted to your Honorable Bodies on October 3, 1891, having been preceded by a number of partial reports transmitted to you when and as received by me during the course of the examination by this Committee.

In my Inaugural Address I stated that if we expected the great improvements we so much desired we must have money, and money in an amount considerably exceeding that which we have had in the past.

On January 1, 1891, the Funded Debt was $\$ 56,579,320.22$; on January 1, 1892, the Funded Debt was $\$ 56,701,320.22$. This indebtedness will be reduced by the payment of $\$ 2,741,500.00$ of the six per cent. loan, and of $\$ 400,000.00$ of the four per cent. loan that matures this year.

The assessed valuation of property as furnished by the Board of Revision of Taxes, is as follows:

An increase of.................................. $\$ 21,793,93000$
For the year 1891 there was appropriated to the various Manicipal Departments $\$ 16,484,027.01$, and for this year, $\$ 17,755,202.76$, an increase of $\$ 1,271,175.75$; which is about the average yearly increase during the last ten years.

I had hoped to start upon the second year of my administration with greatly increased appropriations, in order that many of the permanent improvements contemplated by me could have been commenced, but was met with a deficiency from the year 1891 of over one-half of a million of dollars ($\$ 522,645.80$). To aid in making up this deficit I had to permit $\$ 373,513.58$ to be charged off from the appropriations to the Department of Public Works, for the year 1892 in order that there would not have to be returned to you all the appropriation bills for the year, that they could be scaled down, rearranged to come within the legal limit and be re-appropriated. This deficit in addition to the sum of $\$ 1,015,384.80$ which would otherwise have been available for this year, as
follows:-In Keystone National Bank, \$441,554.32; in Spring Garden National Bank, \$148,402.25, and School Fund, $\$ 425,428.23$, does not make, to say the least, a very encouraging outlook for the second year of my administration

If we are to have the permanent improvements we all so much desire and which we all agree should be commenced, we should have the money to perform the work, and the quicker we settle the problem as to how this money shall be raised, the earlier will we be able to start with these improvements, otherwise the same may be delayed for years to come.

There are two methods for providing the ways and means: one, by increased taxation, the other, by creating a loan. I most respectfully recommend to the earnest consideration of your Honorable Bodies, the question of creating an additional loan, in an amount which will provide for the improvements that the present condition of our City demands so that we may begin at once permanent improvements and progress as other large cities. If any loan is created I most respectfully recommend that it be made for and appropriated to three or four specific and very much needed improvements; first, the repaving of our streets with improved pavements upon a systematic and well defined policy, laid by the best and most improved methods, for I believe that one mile of pavement well laid is better than two miles improperly done; second, in the extension of our system of main sewers, and, third and fourth, in the extension of our gas and water systems. Such improvements will, after being finished, benefit the future generations, and those generations should be required to bear their proportionate share of the cost, and the present not be required to pay for all. The other general improvements may be provided for gradually by the annual appropriations.

I also beg to respectfully recommend that you immediately consider the subject of refunding at a lower rate of interest the City's six per cent. loan, which, could it be accomplished, and I firmly believe it may, would save in interest a large amount.

DEPARTMENT OF PUBLIC SAFETY.

The Director of the Department of Public Safety has submitted a full and detailed report of the workings of his Department for the year 1891.

Bureau of Police.
During the year the Bureau of Police has been increased in efficiency by the addition of 102 patrolmen and the opening of new station-house at Twentieth and Berks street; a station and fire-house at Roxborough; a station, patrol and fire-house at Sixty-first and Thompson streets; a station and fire-house at Tacony; a station and fire-house at Sixty-fifth and Woodland avenue; alterations and additions were contracted for station-houses at Moyamensing avenue below Dickinson street ; at Tenth and Taylor streets; at Germantown; at Front and Master streets, and at Twentieth and Fitzwater streets.
There was also purchased a lot at Front and Westmoreland streets upon which to erect a police and fire stationhouse. The new houses are now all completed and occupied, the improvements to the old ones nearing completion.
Much credit is due to this Bureau for the very vigorous and successful methods taken to suppress the illicit sale of liquor, the arrests for this offence numbering 514, being an increase of 297 over the year 1890. The arrests for lottery policy selling were seventy-four for the year 1891, as against nine for the year 1890.

Bureau of Fire.

During the past year there were added to this Bureau eight men and five Silsby Rotary Engines, and if you continue the annual appropriations made for the past four years for a few years more, it will be thoroughly equipped with the newest and best apparatus. In the appropriation for the year 1892 you made provision for the purchase of a fire-boat, which will be the first in this City-such boats have been very successful

 I rontioner this Porean seond to none and it is aid in the
 wrot careful and literal ornsideration.

Eloctrical Bursam.

This Eurean has continned its rapid adrances and maintanden ite repntation as the finest equippei, moet practical and b,at manager Municipal Electric Bureau in this country, a fart admitted aud cronceted by all electrical experts.

Juring 1×41 there have been successfull! laid $8.6 .2 \pm$ feet of conduits throughout the different sections of our City. The repert of the Chief shows that there are $1 . S_{i} 1$ arc lights in use, including $\boldsymbol{\sigma} \boldsymbol{\prime}$ year we will add 879 to that number. being $\mathbf{4 1}$ more than hiat been added before to the Citys service in any one year.

One of the most important questions now before your Honcrable Bowlies is the one requiring the remoral of the unsightly proles for over-head electric service. We are far berhind the other large cities in this respect, and while the City harself has been gradually extending her underground service whe has not been followed in any just proportionate degree by the private corporations. I most respectfully and yet earnestly recommend to your careful and deliberate consideration the advisability of enacting at once a general ordinance upon this subject, requiring the gradual removal of all poles and overhead wires and the placing of all wires underground. There is no valid reason whatsoever why this should not be done, and every reason, from the standpoint of the City's best interest, why it should. We must sooner or later meet this question, and there is no better time to commence this much needed improvement than the present. Every delay will make the accomplishment of this greatly desired result that much more difficult.

I respectfully recommend to your consideration the question of establishing for the City her own electric light plant. We could build and equip stations upon City property in various localities, and I believe eventually get not only a better service in every respect, but also have absolute control of all the lights that may be needed for street lighting.

Bureau of Health.

The report of the Bureau of Health shows the general condition of the health of the City to be good. The Municipal Hospital, as now located, is in a portion of the City in which improvements are being made very rapidly, and some measure must be taken at the earliest possible moment to remove this hospital to a location where it will not interfere with or retard the advance of improvements.

We have been afflicted for several years past with the sale of diseased meats within the City limits. The present Director of the Department of Public Safety has given the subject his careful and earnest consideration, and after consultation with the Board of Health has made a vigorous and determined effort to stamp out this growing evil. He recommended, and your Honorable Bodies gave him, an appropriation to organize a force whose paricular duty it should be to investigate and prevent the sale of diseased meats. There is nothing so prejudicial to the health of a community as the sale of unwholesome food, and I am glad to state that by reason of the action of the Director of the Department the City is now comparatively free from such affliction.

Bureau of Building Inspectors.

The report of this Bureau shows a decrease of permits issued and receipts since 1890 : there were 4,272 permits issued, covering 9,142 separate operations, showing a decrease in permits of 210 , and in building operations of 3,136 ; the total value of buildings and alterations authorized by permits being $\$ 20,088,236.50$.

Bureau of City Property.

This Bureau reports receipts during the past year of $\$ 82,571.47$ as agaiust $\$ 80,548.54$ for 1890 , being an increase of $\$ 2,022.93$. The City should own as far as practicable the various buildings occupied by her. for municipal purposes, thereby saving the large amount now paid in rentals for the private properties so used. The Public Building Commission, by finishing with all possible rapidity quarters in which these Departments would be installed, would make an immediate saving to the City of many dollars, there being thus saved, in the removal of the Recorder of Deeds office to the City Hall, $\$ 18,500$.

The questions of erecting a new Morgue and of improving the City's property along the river fronts are both commended to your attention.

Bureau of Boiler Inspectors.

This Bureau still successfully continues its important work. The number of boilers inspected and approved during 1891 being 2,979 ; the number of certificates issued being 2,540 ; the number of new boilers 500 , making under the supervision of this Bureau 3,334 . There was paid into the City Treasury by this Bureau $\$ 3,316.31$, the amount earned over and above the yearly expenses.

DEPARTMENT OF PUBLIC WंORKS.

The Fifth Annual Report of the Director of the Department of Public Works is herewith transmitted, presenting detailed statements of the great amount of important work accomplished, with also that which it is hoped to accomplish in the future, provided the recommendations of the Director meet with your approval and the ways and means necessary to carry out the same are provided.

Bureau of Gas.

The itemized statements of the receipts and expenditures of this Bureau will be found in the report hereto attached, as follows:

$$
\begin{aligned}
& \text { In } 1891 \text { the receipts were..7374,072 } 09 \\
& \text { In } 1890 \text { the receipts were..................... 3659,644 } 30 \\
& \text { Being an increase of................................. \$114,427 } 79
\end{aligned}
$$

Increased quantity of gas sold for which payment is not due is as follows :

1891, 40,601,900 cubic feet, at \$1.50.	60,902
1890, $14,538,694$ cubic feet, at $\$ 1.50$.	21,808 04
	$\begin{aligned} & \$ 39,09481 \\ & 114407 \end{aligned}$
Total increase over 1890	\$153,522 60
The expenditures for 18	,826,274 70
And for 1890 were..	2,806,551
Being an increase of.	\$19,723 28
Showing a net increase in profits during the year 1891 of. \qquad	\$133,780

The amount of gas furnished free to the City during
the year 1891 was................................... $587,398,328$ cubic feet.
And in $1890 \ldots . ~$
$551,459,572$ "

This total amount of gas ($587,398,328$ cubic feet) thus consumed, if sold to the public at the present rate, would have placed in the City Treasury $\$ 881,097.49$. Economy in the use of gas by the Municipal Offices can only be enforced when you shall provide by ordinance that each Department shall pay out of its appropriation for the gas it consumes.

It is expected that with the completion of the Walnut street bridge there will be laid a new twenty-inch main thereon for supclying additional gas to West Philadelphia. This will then be connected with the present circuit of large mains laid
during the past year. With the additional supply and the further extensions contemplated for that section there will be secured that which it has so long needed, and should certainly have, an adequate supply of gas.

One of the most important problems which confronts us now is the question of increasing as well as of improving our supply of gas. We have a contract with a private corporation for which you have appropriated $\$ 500,000$ for the purchase of gas manufactured in the plant located at the City's Twentyfifth Ward Gas Works. It is of the utmost importance that we should at once make arrangements to purchase this plant, in order that the entire control of the same will be in the hands of the City, and I beg to respectfully recommend that in the consideration given to this subject you shall appropriate money, not only to make such purchase, but also to hereafter extend the works that the City may make the necessary quantity of gas, instead of purchasing from private parties. The control of our supply of gas should forever remain with the City of Philadelphia herself, and should never be surrendered by either sale or lease. The experience of all other Municipal corporations has been where the gas works were owned by the City, and were afterwards purchased or leased by private corporations, there has always followed an endeavor on the part of such city to regain control of the same.

Bureau of Highways.

The appropriations to this Bureau for the year 1890 for the repaving of streets not occupied by passenger railway companies was $\$ 380,000.00$, and for streets occupied by passenger. railway companies was $\$ 175,000.00$, making a total of $\$ 555,000.00$. In 1891 the total for streets not occupied by passenger railway companies was $\$ 405,263.75$, with no appropriations for railway streets. On October 5, 1891, the Supreme Court of the Commonwealth of Pennsylvania handed down a decision affirming the opinion of the lower Court, declaring that passenger railway companies within the City
of Philadelphia must repave with improved pavements from curb to curb the streets they occupy. It was then too late in the season to begin any of this work. There have been several conferences between representatives of these various companies, the Director of the Department of Public Works, and myself, to arrange some general plan of action under which they should begin work, but as yet we have been unable to arrive at any conclusion.

If we do not arrive at a settlement of this question within a short time, I will submit, by special message, for your consideration the plan and recommendation of the Director for the prosecution of this work.

On December 15, 1891, I transmitted to you a communication upon the question of the repaving of Broad street with a new and improved pavement. You have already appropriated for the year 1892 enough money to start and partially finish this improvement, and I most sincerely trust that you will appropriate the balance of the money necessary to complete this great work, which, when done, will give us one grand highway with an improved pavement extending from the northern limit to the southern limit of the City, a distance of thirteen miles, connecting many of the streets which have already, from time to time, been so repaved.

The Belgian blocks with which this street is now paved will be utilized in paving adjacent streets now paved with cobble stones, these cobble stones being utilized as a foundation for the improved Broad street pavement. I most respectfully refer you to the recommendation of the Director in his report, hereto attached. He has given much time and study to this important question, and his recommendation, if carried out, would solve the question of good and well-paved streets, a matter in which every citizen is most directly interested.

Bureau of Street Cleaning.

The work of this Bureau during the past year has been very satisfactory; the number of complaints being 257 less than in the previous year.

A new policy was inaugurated in asking for bids for the removal of garbage. waste, etc., by disposing of it on dumps, as heretofore, and also by cremation. The bids for the latter system, however, were found to be too expensive for the appropriation available. I recommend that the City shall erect upon her own land crematories and grant the contractors the privilege of using them as a condition of their contract.

On account of the growth of our City and the improvements already made, in what is now our suburban district, the territory in which deposits of waste and offal can be made is rapidly becoming limited, and in consideration of the great distance it will eventually have to be carted, I beg to recommend to your early attention the question of determining how to dispose of the same.

Bureau of Lighting.

The expenses of this Bureau must necessarily increase each year upon the annual extension of the public lighting. The number of electric are lights in 1890 was 1,293 , and in 1891 was 1,719 , an increase of 426 over 1890 ; the number of gasoline lamps in 1890 was 7,160 , and in $1891,7,911$, an increase of 751 . The total number of electric, gas and gasoline lamps now under the charge of the Bureau of Lighting in 1890 was 28,013 as against 30,141 in 1891, an increase of 2.128 . This statement presents additional support to my argument recommending that the City at the earliest possible opportunity erect and control her own electric light plant for Municipal purposes. Each additional arc light upon the public highway is not only a convenience to the citizens generally, but is also of material aid in the prevention of crime.

Bureau of Surveys.

There has been built within the last year 20 main sewers, 3 sections of the Wissahickon High Level sewer, 1 section of the intercepting sewer, in all 36,102 linear feet.

The Westmoreland street section of the Aramingo Canal system has been completed from the Canal to the Delaware river. The Department has under contract four sections of the High Level Intercepting sewer along the Wissahickon valley, and it is expected these extensions will be completed by summer. There was also 133,216 linear feet of branch sewers built, and 23,465 linear feet of branch sewers built under private contract. There is still a great deal to be accomplished in this important branch of public work which is so closely connected with the health of our City.

The Walnut street bridge is approaching completion and work is progressing thereon very satisfactorily. With additional appropriations for the completion of the road bed of the river spans, the railings and general finish, this bridge can be open for public travel in the latter part of this year.

I beg to also call your special attention to the condition of the bridge continuing Girard avenue over the Philadelphia and Reading Railroad, and the timber bridge over the Schuylkill river at the Falls. The repairing of these bridges, on account of their condition, is practically impossible, and the question of their reconstruction should receive your early attention.

Bureau of Water.

On October 8, 1891, I transmitted to your Honorable Bodies the report of the Director upon the future water supply of our City, and I beg to again call your attention to this report, which was made after a most thorough and exhaustive study of the subject.

The total increase of the number of gallons of water supplied during the last five years has been $23,238,868235$ gallons; the consumption during 1891 was 140 gallons per day per capita. Strange to state, while this has rapidly increased year by year, we have to-day no greater pumping capacity than we had in 1887. It was impossible during the past summer, to keep the East Park Reservoir filled to
its entire capacity, the depth of water only averaging 12 feet, which is 13 feet less than can be stored therein. This has been caused by our limited pumping capacity, which will be very materially improved by the 1 st of July next, when we expect to have completed and in service the new 20 million gallon pumping engine contracted for with the Southwark Foundry and Machine Company by my distinguished predecessor. This would, however, have still left our pumping. capacity inadequate, and on October 8, 1891, in a special message, I also presented the necessity for additional pumping engines and urged still further appropriations to remedy this very dangerous and long-continued defect in our water system.

By reason of the appropriations for 1892 the Department will contract for an additional 20 million gallon engine for the Spring Garden pumping station; a 10 million gallon engine for the pumping station at Belmont; a 10 million gallon engine for the Roxborough station; a 15 million gallon engine at the Frankford pumping station at Lardner's Point on the Delaware river. With these additional facilities we will be able to store in the reservoirs now finished a much larger quantity of water and permit it a longer time in which to subside before supplying it.

The new Roxborough reservoir, which will have a capacity of 148 million gallons, intended for supplying the Twenty-first and Twenty-second Wards and that portion of the Twentyeighth Ward above Westmoreland street, we will have finished during the present year. This, with the reservoir already there, will afford such storage capacity as to provide at all times an ample supply of subsided water for the above District.

The most important question decided this year was the selection of the Indian Queen Lane site, for a storage reservoir to supply the entire northwest section of the City, which has a population of upwards of 250,000 people now, and is rapidly increasing. This section is, and always has been,
supplied by water from direct pumpage. For two years the Water Committee of your Honorable Bodies has been considering the question of selecting a site in this very important district, and now that the question has been decided, it is due to the health and comfort of the population living in that section that you immediately make an appropriation which will enable the Department to start the work on this reservoir, which has been much too long delayed. There is no question in connection with the water supply that demands greater and more immediate attention than this.

The next matter in importance for your early consideration is the question of building a reservoir in the West Park to supply the present demands of West Philadelphia and those of the future which will be made necessary by the rapidly increasing population.

As previously stated, all moneys spent for reservoirs is a permanent investment; they will always be available no matter from whence may come the future water supply of our City.

I also most sincerely trust that you will very carefully consider the practical and throughly sound recommendation of the Director of the Department of Public Works upon this entire question of our water supply, as made in his report herewith transmitted, which I beg to state has my unqualified and entire approval.

DEPARTMENT OF CHARITIES AND CORRECTION.

I beg leave to call to your attention the able and comprehensive report of the President of the Board of Directors of the Department of Charities and Correction, herewith transmitted, showing in detail the great amount of work in the way of permanent improvement that has been accomplished during the past year.

On November 12, 1891, the new buildings for the Insane, after a thorough inspection, and upon the Architect's certif-
cate, were accepted by the Department. The total cost of these buildings, including steam heating, and fixtures for electric and gas lighting, and the laundry building, was $\$ 236,344.53$.

Included within these buildings is one main dining room, in which all the insane patients may be fed at one time. This dining room is as perfectly arranged as any in the country.

I beg also to call to your attention the very interesting and exhaustive description of all of these buildings, made by the President of the Board, which is hereto attached, and also to call your special attention to the many other suggestions, recommendations, etc., in the accompanying report, all of which have for their ultimate purpose the improvement of the condition of the unfortunates whom our City has to care for, in the two Bureaus in the Department, the Bureau of Charities and the Bureau of Correction.

The ordinance just passed, placing upon the City plan a Boulevard will be of advantage and benefit to the citizens generally. I most earnestly recommend that you consider the advisability of providing at the earliest moment the necessary appropriation for commencing this great public improvement, that it may be pushed to completion with all possible dispatch, and, as it will be the principal approach to Fairmount Park, it should be made the most beautiful and attractive.

I have the honor to also transmit herewith for your consideration the Annual Reports of the following Departments:

Receiver of Taxes,
City Treasurer,
City Controller,
Law,
Education, and
Sinking Fund Commission.

There ends to-day another municipal year-the first of my administration. During that time much that has been of detriment and of disadvantage to the good name of our City has occurred, yet material progress has been made in bettering her condition and advancing her toward the foremost place among other great cities. Many improvements in the public service have been inaugurated and successfully established, and much in the way of permanent improvements has been added to our City's prosperity.

We are starting upon a new municipal year, and while despite the misfortunes of the past twelve months much was accomplished for her good, there yet remains very much more to be under caken.

The people expect, and properly, too, that careful, considerate, and conscientious administration of public affairs from you, the Legislative, and me, the Executive Branch of the Municipal Government, which will assure and advance the best interests and material welfare of the City of Philadelphia.

To that end let us both bend our earnest thought, our best endeavor, our every energy, that at its close we may merit and receive the approbation and commendation of our fellow citizens.

> I am,
> Respectfully,
> EDWIN S. STUART,
> Mayop.

FIFTH ANNUAL REPORT

OF THE

Depariment of Public Works.

JAMES H. WINDRIM, Director.

OHEICHRS

OF THE

Department of Public Works.

Director, JAMES H. WINDRIM.

> C'hief Clerk, HARRY W. QUICK.

Clerk-WILLIS sheble.
Stenographer and Cleri-W. W. alexander.
Stemographer-CLEMENT L BURTNETT.
Typewriter-GWILLEM S. DAVIS.
Mbseenger-James A. JUNior.

> Superintendent of City Ice Boats, H. Е. MELVILLE.

Chiefs of Bureaus:
Gab-William K. Park.
Highaya-George a. bullock.
Liohtina-JOHN J. KIRK.
Street Cleamino-SYlvester h. Martin
SURVEYG-SAMUEL L SMEDLEY.
WATER-JOHN L. OGDEN.

FIFTH ANNUAL REPORT

DEPARTMENT OF PUBLIC WORKS.

JAMES H. WINDRIM, Director.

> Philadelphia, January 2, 189:.

Hon. Edwin S. Stuart, Mayor of Philadelphia.

Sir :-In compliance with the Act of Assembly, approved June 1, 1885, I have the honor to present the Fifth Annual Report of the Department of Public Works of the City of Philadelphia for the year ending December 31, 1891.

The works of the several Bureaus of the Department have progressed satisfactorily, and the year closes with much accomplished. The reports of the Chiefs of the Bureaus, herewith submitted, show in detail the works completed by each; a general summary of said work is here presented, with suggestions for improvements to certain classes of the same under the direction of the Department.

City Ice Boats.

The repairs necessary to place the boats in condition for service were made during the summer months, and they are ready for daty should they be required to keep navigation open and the river free from obstruction by ice.

The boats are located at the wharf of the House of Correction, without expense to the City.

The following comparative summary is an abstract of the work done by the City Ice Boats, and of the receipts for towage, and the expense of maintenance during the years 1889-90, and 1890-91 :

	1889 and 1890.		1890 and 1891.	
	No.	Tonnage	No.	Tonnage.
Veasels Outward.............................	2	1,060
. Inward0....	-
" Assisted..............................	1	2,000
Total......................		8	8,060

-	$\begin{aligned} & 1889 \text { and } \\ & 1890 . \end{aligned}$	$\begin{aligned} & 1890 \text { and } \\ & 1891 . \end{aligned}$
Amount received for towage and asaistance rendered.............	948864
Amount received from the sale of old material......................	529650	6685
Total paid City Treasurar...	829650	848999

	1890.	1891.
Total amount of warrants drawn...................................... ..	\$11,040 50	\$23,44190
Deduct cash paid City Treasurar..	29650	48999
Actual current expenditure	810,744 00	\$22,951 91

Bureau of Gas.
During the past year the improvements and additions made to the City Gas Works have been as follows:

In distributing mains there were added to the supply system 45.1 miles, making a total of nearly 1,036 miles of gas mains laid in the streets, the property of the City.

Twenty-sixth Ward Works:-An original stack of 3's was
substituted by building a stack of 6's of the Flemming half regenerative system, making the third stack of these improved benches completed and in operation.

An exhaust fan, engine and boiler have been located for the distribution of gas from the holder at this station.

Twenty-fifth Ward Works:-An Ordinance of Councils, approved March 24, 1891, authorized "The Philadelphia Gas Improvement Company" to increase its facilities for manufacturing and purifying water gas, the improvements and changes in mains to be made at the expense of the Yhiladelphia Gas Improvement Company, said company to pay rent to the City for the use of a purifying and condensing house in the sum of $\$ 5,000$ per annum. These works have been completed and are in operation.

Ninth Ward Works:-The carpenter shop and stables, which were destroyed by fire on June 25, 1891, have been reconstructed in a substantial manner. The insurance on the buildings was promptly paid by the companies into the City Treasury, and by Councils appropriated for their reconstruction.

During the year 1892 it is expected that with the completion of the Walnut street bridge, a 20 -inch main will be laid over the bridge to West Philadelphia, and there connected with the circuit of large mains laid during the past year. With the additional supply led across the river, and the further extension of mains contemplated, West Philadelphia will have an adequate supply of gas.

Twenty-first Ward Works:-The increase in the manufacturing capacity at the Twenty-fifth Ward Works, the enlargement of holder at Ninth and Diamond streets, with the equalization of pressure, have given a satisfactory supply of gas to Manayunk and Roxborough, not requiring the firing of the stacks in these works which heretofore had been necessary during the winter months. It is the purpose of the Department to further extend the mains in the eastern part of the Twenty-second Ward, as the opening of streets will permit, and thus obtain a better supply of gas for Chestnut Hill.

Holders :-The minor repairs and repainting holders located at the several works, at Ninth and Mifflin streets, and at Ninth and Diamond streets, have been done by the employes of the Bureau.

A contract was made with the Camden Iron Works, to be completed August 15, 1891, upon its proposal for the Pease guiding system, for the enlargement of the two holders at Ninth and Diamond streets, to increase the capacity of each from $1,000,000$ cubic feet to $1,500,000$ cubic feet. Upon October 5, 1891, one of the holders was turned over to the Department and put in use. The construction adopted for the enlargement of the holders has proved complicated and difficult to take care of in winter weather.

It is optional with the Department to select the column system for guides and supports in the reconstruction of the second holder; the contractor has been notified of the selection of the latter, and it is expected that the second holder will be completed for use about July 15th next.

By substituting larger sized pipes in the older districts of the City, and increasing the sizes of pipes in streets previous to repaving, with the extension of the larger supply mains and connecting them in circuits, great improvement has been made to the service, and with an equalization of pressure, a more uniform distribution has been secured to the several districts of the City.

The plant at the Twenty-sixth Ward Works is the most productive to the City of any making gas from coal, for the reason that modern improved stacks have been introduced (the Flemming benches) which yield more gas per mouth piece than any others in the works; these stacks are discharged by machinery, economizing labor. These works were originally equipped with the primitive style of benches, and of them 30 per cent. still remain unaltered.

In the Twenty-fifth Ward Works the stacks erected, which were the best of the kind at the time of construction, remain, and will not produce gas as economically as those of the im-
proved modern patterns, nor can they be operated to compete with them.

In the Ninth Ward Works there are two types of improved stacks; the Kloenné and the Stanly-Steadman, which were the best at the time of their selection ; there yet remains in these works at this time 66 per cent. of the early form of stack for the manufacture of gas.

The adoption of the manufacture of water gas by the city was occasioned by the demand for an increased supply of gas with a higher illuminating power, which the city had not the facilities to provide. It is imperative for the city to extend its plant for the manufacture of the entire quantity of gas required by the consumers. The amount of consumption is increasing with the growth of the city, and if the department is to supply all of the gas manufactured by the city, appropriations should be made to construct additional works, or the city must continue to purchase gas in the manner already instituted, from a private corporation.

The city should own its entire plant, increasing its capacity to supply the public, and in doing so, adopt the improved methods for the manufacture of gas which science and business enterprise have proven efficient, in order to supply satisfactory illuminating and fuel gas at the lowest possible price to the consumer.

With such improvements made, there can be a reduction in the price of gas; with that reduction there would naturally be a greater consumption; but the city is not at the present time in condition to do either-make the reduction in price or make the additional gas.

The department suggests that means be provided to establish a plant by the city for the manufacture of at least six million cubic feet of water gas per day, and supply the necessary scrubbers, condensers, purifiers, an additional holder with capacity of $3,000,000$ cubic feet, exhausters and the necessary mains for distribution to the other holder stations; the improvements would involve an expenditure of about
$\$ 800,000.00$, and they should be constructed to form a part of any future extensions.

These additions, supplemented further with modern Flemming benches for the production of coal gas in place of those idle and non-producing in the T wenty-sixth Ward Works, would give equal proportions of the two makes of gas, which fixed as one, is claimed by expert authorities to have the best possible illuminating power and is of desirable gravity.

The city has ample ground well adapted for a plant to manufacture the entire supply of gas. With a view to furnishing gas at a reduced rate for lighting, and at a still lower rate if used as fuel for heat and power, the most economical methods to produce a satisfactory supply of gas should be provided.

The betterments above referred to, offer the best way for the improvement of the service, and would be the step leading to a reduction in the price of gas to the consumer. Councils should appropriate money for this especial purpose.

The following is a summary of the receipts and expenditures for the years 1890 and 1891:

Comparative Statement of Receipts.

Yrar.	Recelpts.	Increasa.
1890.	3,659,644 30	
1891.............................	3,774,072 09	114,427 79

Comparative Statement of Expenditures.

	1890.	1891.
Current expenses...........................	2,495,196 52	2,552,150 39
Extensions..................................	311,354 90	274,124 31
Total.................	2,806,551 42	2,826,274 70

The receipts, as reported in detail by the Chief of the Bureau, are:

$$
\begin{aligned}
& \text { Total, } 1891 \\
& \text {. } \$ 3,774,07209 \\
& \text { " } 1890 \\
& \text { 3,659,644 } 30 \\
& \text { Increase. } \\
& \$ 114,42779
\end{aligned}
$$

To the receipts from gas should be added the value, at $\$ 1.50$ per 1,000 cubic feet, of the increased quantity of gas sold for which payment is not due, as follows :

The operations of the Bureau during the year 1890 and 1891 are summarized as follows:

	1890. Cubic feet.	$\begin{aligned} & 1891 . \\ & \text { Cubic feet. } \end{aligned}$
Total outpat..	3,311,995,000	8,591,887,000
Largeot production of gas in any 24 hours.................	* 14,058,000	+14,253,000
Largest consumption in any 24 hours........................	a. 16,103,000	b. $16,196,000$

- + On December 16th and 4th.
a. 6. on December 17th and 24th.

	Bushels.	Bushels.
Quantity of coke on hand January 1...........................	212,886	256,090
Made during the year...	5,959,784	5,905,109
Total.	6,172,670	6,161,199

Coke sold during the year.......	2,925,894	8,005,163
Breeze sold during the year......................................	554,425	606,000
Used under retorts..	2.085,965	2,002,845
Used under boilers and lime-kilns..............................	387,513	368,065
In offices, yards and in pipe-laying...	62,783	68,510
On hand December 31...	25\%,090	110,615
Total..	6,172,670	6,161,199

	1890.	1891.
Number of meters introduced during the year..............	5,674	5,465
Total in use..	183,290	188,755
Services introduced during the year.............................	10,789	10,515
Total in use...	158,905	169,420
Lights added during the year...................................	122,973	120,284
Total in use...	2,328,986	2,449,270
Total number of consumers......................................	134,555	140,052
Number of public lamps	18,984	19,947

The average candle power of the several tests was as follows:
January 19.78 July.... 19.49
February 19.99 August................................ 19.12
March............................... 20.19 September............................ 20.25
April................................. 20.58 October............................... 20.24
May......... 20.39 November........................... 20.53
June................................. 19.75 December............................. 19.95
Equal to 20.02 candles.
In 1890 it was equal to 19.73 candles.
The following table gives the amount of gas consumed in the offices of the several departments, for the transaction of the public business:

Quantity of free gas burned in $1890.551,459,572$ cubic feet.

$$
\text { " } \quad \text { " } 1891,587,398,3 \div 9 \quad \text { " }
$$

In the report of 1890, the Director suggests that economy in the use of gas will only be enforced when Councils shall, by ordinance, provide that the gas used by any department shall be paid for from the appropriations made to it. The increase in the consumption of gas during 1891 is further evidence why Councils should, by legislation, make each department responsible for the quantity of gas it uses. All waste or misuse of gas is a direct loss, reducing the profits of the works to the City.

Manufacturing and Holder Capacity.-The following tables give in detail the capacity of the several Works, and the date of construction, the location and the capacity of all the holders :

Works.	Stacks.	Retorts per Stacks.	Total Ketorts.	Grand Total.	Maximum Capacity per Works, 24 hours.	Total Maximum Capacity, - 24 hours.
Ninth Ward.....................	4	150	600			
	2	194	388			
Experimental Bench.......... \cdot	3	991	6,600,000	
Twenty-first Ward.............	1	30	30	30	200,000	
Twenty-fifh Ward............	6	120	720	720	4,000,000	
Twenty-sixth Ward...........	2	72	144			
	8	144	432			
	1	120	120			
				696	6,600,000	16,300,000

The above does not include the plant of the Philadelphia Gas Improvement Company, which has a capacity of $11,000,000$ cubic feet per day.
There are at the Ninth Ward Works, in addition to the above, eight (8) retorts used exclusively for vaporizing naphtha, for maintaining clear pipes about the Works.

Holders.

Location.	When Erected.	Dimensions.	Capacity.	Total.
Ninth Ward Works.............	1851	Feet. 140×70	Cubic feet. 1,000,000	
"	1871	140×70	1,000,000	
"	1844	80×40	200,000	
"	1847	80×40	200,000	2,400,000
Twenty-finh Ward Works....	1876	140×70	1,000,000	
"	1876	140×70	1,000,000	
. \quad.	1885	140×70	1,000,000	
"	1885	140×70	1,000,000	
"	1889	140×70	1,000,000	5,000,000
Twenty-sixth Ward Works...	1852	160×90	1,800,000	1,800,000
Twenty-first Ward Works......		60×88	103,000	
u	1874	78×44	200,000	303,000
Frankford: Franktord ave nue and Buckius street......		50×16	31,000	
Frankford: Frankford avenue and Buckius street......		45×16	25,000	
Frankford: Frankford avenue and Buckiua street........	1869	80×26	180,000	186,000
Bridesburg: Richmond and Bridge streets.	1869	60×21	59,000	89,000
Ninth and Diamond streets....	1869	140×70	1,000,000	
"	1874	140×70	1,500,000	2,500,000
Ninth and Miffin streets. \qquad -. \qquad	1874	115×62 160×84	$\begin{array}{r} 600.000 \\ 1,577,000 \end{array}$	2,177,000
Twenty-fifth and Callowhill	1851	100×50	390,000	
Twenty-fith and Callowhill streets. \qquad	1888	80×48	203,000	598,000
Germantown, near Wister Station, P. \& R. R. R.........	1870	100×50	390,000	890,000
Total.				15,408,000

The holder capacity aggregates $15,408,000$ cubic feet. The capacity of holders should not be less than fifty per cent. greater than the maximum manufacturing capacity. The City is deficient in holder capacity $6,000,000$ cubic feet.

The following is a comparative statement of the pipe laid during the years 1890 and 1891.

	$1890 .$ Feet.	$1891 .$ Feet.
3 inch_o..	10,911	8,072
4 ¢ ..o.0...............	119,797	180,978
6 ¢ -o.n..	10,940	5,420
8 4 -............................... ..	24	25,486
12 "	16	88,494
16 "	4
20 e -...	84,451	26,152
80 m ..	15,308	8,640
Total..	* 191,451	+288,192

* 1890 equal to $863 /$ miles.
$\dagger 1891$ equal to 45% miles.
The following table gives in detail the total output of gas and its distribution during the years 1890 and 1891:

Total output and distribution of Gas.

Bureau of Highways.

The paved streets of the City aggregate about 756.78 miles, of which 281.96 miles are occupied by Passenger Railway Companies ; there are 37 miles of macadam roads, and 452.05 miles of unpaved streets and country roads.

The work of the Bureau during the past year is shown in detail by the accompanying tables. The number of square yards of streets paved and repaved with improved pavement, the repaving of tramway streets with Belgian block, the grading and opening of streets, repairs to paved streets, etc., have been continued to the full extent of the funds available.

The following tables give comparative statements, in detail, of the work done during 1890 and 1891, of the paving of new streets, of the repaving of old streets, and of the receipts and expenditures of the Bureau of Highways.

Comparative Statement of Work Done.

	1890.	1891.	
Now Paving...	205,928.00	197,511.00	Linear feel
Macadamizing (new)..	81,411.00	34,344.00	" ${ }^{\text {a }}$
Grading..	516,424.68	626,058.31	Cubic yds.
New footway paving...	47,199.00	305,513.00	Square yde
Repairs to paved streets.....................................	390,386.94	336,980.7	" ${ }^{\text {c }}$
Footways repaved...	12,310.75	12,681.8	* 4
Ditches repered..	88,461.00	64,366.	
Gutter stone laid..............	63,262.00	53,023.00	Linear feet
Croeing stone laid.......................	46,406.00	50,887.00	" "
Tramway stone laid.....................	10,685.00	2,053.00	" *
Curbetone reet...	221,564.00	272,137.5	" 6
Wooden trunks........o..	5,531.00	6,284.00	$\cdots \quad$ "
Brick and stone drains.......................................	811.00	386.5	*
Hand railings..	2,802.00	2,907.00	*
Broken stone used...	17,117.00	23,429.7	Cubic yds.
Macadamising (resurfaced)..................................	44.561.00	23,860.00	Lincar feet
Footway, curb and rallroad notices served...........	22,999.	21,264.	

Summary of Work done in Improved Pavements. New streets.

	1890.		1891.	
	Square yards.	Linear feet.	Square yards.	Linear feet.
Granite blocks................................	121,895.00	43,540.00	188,918.16	57,296.00
Sheet asphalt.................................	80,774.00	13,428.00	40,654.8	16,126.00
Vitrified bricks.............................	187,015.00	45,608.00	192,692.00	58,122.00
Asphalt blocks..............................	5,068.00	.2,986.00	671.00	400.00
Macadamiving...............................	70,290.00	81,411.00	74,900.00	34,844.00
Slag hlocks....................................	1,810.00	500.00		
Total..................	366,352.00	* 187,468.00	492.885.96	+166,288.00

Replacing Cobblestone with Improved Pavements. Old streets.

	1890.		1891.	
	Square yards.	Linear feot.	Square yards.	Linear feet.
Granite blocks..............................	158,314.00	68,099.00	94,588.00	41,844.00
Sheet asphalt.................	124,578.00	81,767.00	78,894.00	23,984.00
Vitrified brick...............................		860.6	239.00
Total..................................	282,892.00	-99,866.00	174,842.6	+65,567.00

*1890. Total amount of new paving, 237384 linear feet, equal to 44 miles, 5,014 linear feet

Comparative Statement of Receipts.

Year.	Receipts.	Increase.
1890.	871,514 82	\$1,810 79
1891.	71,815 89	30157

Comparative Statement of Expenditurea

	1890.	1891.
Current expenses..	\$355,013 15	8293,522 41
For extensions..	1,048,857 99	820,40164
Total..................................	81,388,871 14	\$1,113,924 05

The Supreme Court having decided that the passenger railway companies are liable for the repaving from curb to curb of the streets occupied by them, makes it possible to have the work of repaving the streets for which such railway companies are responsible resumed by them, and the City reimbursed for the paving it has had done on streets occupied by said companies.
It is the intention of the Department, under this decision, to have the several companies extend, during the year, the repaving on the streets upon which work has been commenced by the City for the companies; while the progress may not be as rapid as desired, if the work is continuous and of substantial quality, in a few years the business streets will be placed in a creditable condition.

The Department has recommended that the appropriation for repaving during 1892 be utilized for laying an improved pavement on Broad street, the main highway, which extends from the extreme southern to the extreme northern limit of the City. This street is now paved with granite blocks that were put down at different times upon an imperfect foundation ; the surface has become irregular, rutted and worn beyond repair, necessitating the repaving of the street. The blocks to be removed will be utilized to repave adjacent streets now paved with cobble stones; by this method the greatest amount of improved paving will be secured to the City at reasonable cost.

Curbing.-The quality of the curbing and its alignment
has so much to do with the appearance of a street, the condition of the gutters and the permanence of the road-bed, that an ordinance should be passed making it conditional that a dressed granite carb shall be set upon all streets hereafter prior to paving or repaving.

In the matter of crossings, gutter-stone, tramways and the repairs to streets, the revised specifications of the Department for the year 1892 require materials of better quality and a better grade of work.

The breaking of the surface of streets to make undergreund improvements or connections, has been in this City as elsewhere, the cause of irreparable injury to the paring; Councils have by ordinance required that before repaving, the sewer, gas and water pipe shall be first introduced; to still further protect the streets to be repaved, Councils should legislate that before any street is paved or repaved, connections shall be made with the underground works, sewers, water and gas pipe; these to be led inside the line of the curb by the City, at such distance apart as will secure to all properties on the streets the privilege of drainage, of water and gas supply, the parties applying for use of the same to pay the cost of the connections to the City.

Macadam Roads.-The appropriation for macadam roads is not sufficient to keep them in proper condition, and the Department can only do work so far as the money appropriated will permit.

Grading.-The opening of the streets in the suburban districts give facilities of travel to the local public, and greatly benefits the adjacent property owners, while the expense of grading is with few exceptions borne by the City.

The Department has no authority to enforce the grading of footways with the grading of streets in the suburban districts ; when a street is opened and graded, delay by owners to grade the footways in front of their properties causes additional expense to the City for materials and labor to maintain the street.

The dirt from slipping banks of ungraded footways obstructs the drainage and the road, and increases the liability of the City for damages from accident cases on uncompleted highways. During the year 1891 there has been $109,633.63$ cubic yards of grading in excess of that done in 1890 ; while the opening of streets adds to the extent of the City, and to its income when the new streets are built upon, it is but reasonable that the owners of land immediately benefited should grade and pave the footways at the time the City opens the roadway.

In order to enforce the ordinance relative to grading, curbing and paving sidewalks on streets newly opened and graded in suburban districts, additional legislation is required to give the Department power to compel property owners to comply with the requirements of the ordinance.

The report of the Chief of the Bureau of Highways contains detailed statements of the streets paved, in order of merit of the materials used. An earnest effort has been made during the past year to improve the quality of the material used in street paving, and the character of the work, with good results.

The endurance of any street paving is first dependent upon a uniform solid foundation; the foundation should be capable of sustaining the traffic the street surface is subjected to; it should be kept dry or properly drained ; the base of the paving material should either be broken stone, screenings or a material that will retain the least water, or a concrete that will exclude moisture from it ; the practical difference in the cost of the two is the addition of the cement to make a concrete and the labor to mix and spread it. A properly prepared foundation for a pavement adds to the cost of the paving.

The greatest endurance and wear of any class of paving material will be shown if it is laid upon a substantial ooncrete base; the latter will bridge over inequalities in the foundation. and keep the street surface free from irregularities other
than occur from the wearing or failure of the top surface of the paving material; all improved street paving in a city should be laid on a concrete base, which, when properly placed, is permanent for the renewal of any paving surface upon it.

It is to be noted that the street pavements in the cities of the old world are laid upon a cement concrete base, while in this City, on account of the first cost of this best foundation, this important addition to the permanence of street paving is excluded.

Repairs to Sewers.-By systematic inspection of the sewers their condition was ascertained, and, where necessary, repairs were made through the year at a cost of $\$ 19,962.02$.

Bridges.-As far as the appropriations permitted, the iron bridges were repainted and minor bridges were repaired.

In July last the Peoples Passenger Railway Company renewed the planking and roadway of the South street bridge.

The bridge continuing Girard avenue over the Philadelphia \& Reading Railroad, reported by message to Councils June 10, 1891, with an estimate of cost for its reconstruction, continues with nothing done, but with increasing necessity for its renewal ; the timber bridge over the Schuylkill river above the Falls has been repaired, its timbers renewed from time to time, but the condition of this bridge warrants that it should be replaced by a steel or iron structure at an early date as contemplated by plans of the Bureau of Surveys.

Repaving Streets occupied by Passenger Railways.-The system already instituted by Councils of laying improved paving in the streets not occupied by passenger railway companies, to complete continuously the street its entire length, is the policy that will secure well paved streets for business traffic, and which can be economically repaired and kept clean.

The number of main streets for which the passenger railway companies are responsible to repave and maintain, limits the progress of street improvement by the Department, as the streets in portions of the City where repaving is most neeled are dependent upon the action of the said companies.

Councils, by ordinance of February 2, 1882, which still remains in force, defined the amount of repaving the several companies should do each year. Some advance may be expected from the companies during the year 1892.

The specifications of the Department will require the repaving in the business thoroughfares to be first class in every particular, and laid upon concrete foundations with granite block paving, finished with pebble and pitch cement joints. The character of paving, while more expensive in first cost, will be enduring, and its foundations more readily reinstated when broken or displaced for any purpose.

Good paving provides a means for quick transit and facilitates business. Most of the principal streets north and south, east and west, not occupied by railway companies have improved pavements. The oblique streets, crossing at angles the regular streets, are the shortest and most direct lines between remote points, and connect the improved pavements of all streets intersecting with them; they should be paved with improved pavement, and facilitate rapid transit over their route. Portions of these oblique thoroughfares, running northeast, northwest, or southeast and southwest, on each side of the Schuylkill river, are occupied by passenger railways. They should be repared by the companies and by the City. The business of the City would be benefited by such improved streets.

Subway for Underground Conduits.-Councils by ordinance grant privileges to corporations to lay underground conduits in the streets of the City for conducting a private business; the ordinances usually require each company to repave the streets displaced to lay these works; the number of grants has so increased upon the main business streets that all the available space is practically taken up by them.

On account of the sub-divided responsibility of the coporations to make repairs, it is becoming almost impracticable to have the streets thus occupied maintained in proper condition, and the companies become indifferent about it. Connections
have to be made to the conduits, repairs are frequent, so that the street surface is broken, then imperfectly patched, and the street made discreditable in appearance and unsatisfactory for travel.

The privilege granted in the future to any company to occupy the streets of the City should contain a proviso, that it shall remove or transfer its conduits, or other property, into any subway or other structure the City may in the future build or provide, and the company pay a rate per annum for the use of the same.

Such legislation would make it practicable at any time for the City to construct in the streets a subway which would receive all character of electric wires, pneumatic tubes, mains for steam plant, etc., each company paying a rental therefor to the City.

A system devised to accommodate existing companies and of capacity for prospective use, should yield a revenue to the City; solve the problem of exposed electric. wires; provide a way for the introduction into the City any device requisite to facilitate business enterprise, or furnish additional convenience to the householder, when to be obtained by underground works; give better streets and relieve the companies from the expense of their maintenance and repairs.

Board of Highway Supervisors.

The report of the Secretary of the Board states in detail the number of permits that have been granted for underground works in the streets of the City for the construction of vaults, for the extension of railroau tracks, curves and turnouts, and erection of bridges.

- The receipts of the Board for the year 1891 show it is not only self-supporting, but still a source of revenue to the City; the receipts exceed the expenses of the Board $\$ 352.10$. The draughtsman continues to keep of record by plans all the works authorized by the Board.

The following is a statement of the number of permits
anthorized to be issued to the several underground companies during the year 1891:

Weat End Electric Light Co.. 6
Frankford Avenue Merchants Electric Light Co.............. 3
Manufacturers Electric Light Co.................................... 6
The following is a summary of the transactions of the Board and of the work of the draughting department for the years 1890 and 1891 :

Transactions of the Board of Highway Supervisors.

Permits authorized to be issued.	1890.	1891.
For vaults................ ..	4	8
For railroad track, curves, and turnouts...	58	70
Por underground pipes...	7	4
For electrical conduits...	110	15
For artesian wells..	1
For ereeting bridgee...............		1

Work done by the Draughtsmen of the Board of Highway Supervisors.

Receipts and Expenditures for 1891.

Recripts.	\$3,780 00
Expenditures.	3,427 90
Profit to the cit	$\$ 35210$

Bureau of Lighting.

Prior to January 1, 1892, the City was divided into five lamplighting districts. The increase in the number of lamps,
due to the growth and extension of the City, made an additional district nocessary, which, with an increase of twenty lamplighters, has been authorized by Councils; a better service will be secured by this increase.

The following comparative statement shows the number of lamps and the expenditures during the years 1890 and 1891.

	1890.		1891.	
	No.	Cost.	No.	Cost.
Electric Arc Lights....................	1,298	8201,209 29	1,719	8281,741 18
Gasoline Lampe........................	7,160	147,560 64	7,911	162,904 55
Gas Lamps Sapplied by the Northern Liberty Gas Company......	364	8,186 78	817	7,420 51
Under Charge of Bureau of Lighting.	* 18,984	154,609 48	19,947	101,280 89
Electric Arc Lights under charge of Board of Directors of City Trusts \qquad	50	50
Gas Lampe under charge of Bu reau of Correction.	172	197
Total	28,013	\$511,686 04	80,141	568,887 08

[^0]The Bureau of Lighting, in conjunction with the Electrical Bureau, prepared specifications for electric lighting upon which, on December 3d, 1891, proposals were received and contracts awarded to the several electric light companies for furnishing 2000 candle-power arc lights for street lighting during 1892.

The following is a schedule of the number of electric lights, the price paid per light per night, and the cost of lighting the several districts during the year 1891 :

| | |
| :--- | :--- | :--- | :--- |

	1891.	
	Number.	Price.
Franemord Elictric Light and Power Company.		
Bounded by Loiper street on the north west, Bridge street on the northeast, and Frankford creek on the southeast and southwest, beling in the Twenty-third Ward.	87	40
Southerr Electric Light and Power Company.		
All lights within the district bounded by the south side of Boukh street and the north side of Government avenue, between Broad street and the Delaware river.. \qquad	150	80
Broad street, south of South street. Underground cable..........	8	80
The Powelton Elbectric Company.		
All that portion of the Clty of Philadelphia lying west of the Schuylkill river known as West Philadelphia, being all of the Twenty-fourth Ward, the Twenty-serenth Ward, and the Thirty-fourth Ward. The boundaries of this district are the Schuylkill river on the east, Darby creek and Cobb's creek on the west and south. and Cits avenue on the north. Including west end of South street bridge..	106	47
Suburbar Elfitric Company.		
In all of the Thirty-fifth Ward, and that portion of the Twentythird Wand lying north of Bridge street, in the City of Philadelphia.	56
The Electric Power Company.		
All lights within the district bounded by the west side of Eighth street, the east side of Broad street, the south side of Fine street, and the north side of South street, except Cbestnut etreet. \qquad	57	321/2

A verage price, 42 cents.
The following is a schedule of the number of electric lights, the price to be paid per light per night, and the cost of lighting the several districts during the year 1892.

| |
| :--- | :--- | :--- | :--- |

| |
| :--- | :--- | :--- | :--- | :--- |

Average price, 42.48 cents.

As the City extends its underground cable service the overhead wires should decrease. These cables will furnish lights of a uniform standard, and the City will be supplied with the best, most secure, and economical service.

Considering it to the best interests of the City that it should own the electric light poles, the specifications provide that all poles erected during 1892 shall be the standard pole adopted by the City, and become the property of the City at the completion of the contracts awarded for the year 1892.

On account of the superiority of the electric light for street lighting, Councils should appropriate liberally for the extension of this branch of the public service; electric lighta should displace gas lamps in all the principal streets. With an underground service established by the City for public lighting, it could not be considered unreasonable if the City should then require all corporations now using overhead wires to lay them underground und free the streets from an unsightly and dangerous obstruction.

In this connection the Department earnestly endorses the recommendation of the Director of the Department of Public Works in his report for the year 1890, of the desirability of the City erecting and controlling its own electric light plant. The excellence of the electric arc light upon the streets and highways commends its extension until the whole City shall have the advantages of this method of lighting.

Well-lighted streets are a necessity for the convenience of the public, and will prove to be a direct benefit, assisting to expose crime and prevent violation of law.

Bureau of Street Cleaning.

The work of this Bureau during the year 1891 has been of a very satisfactory character, as evidenced by a decrease in the number of complaints.

The number of complaints of all kinds was 1844-257 less than in the previous year.

The Chief of the Bureau being requested to furnish this
office with a list of all streets so far out of repair'as to render the cleaning of them difficult, promptly complied with the request, and as a result many of the streets were repaired, and the Bureau was thus enabled to keep them in a cleanor condition.

On December 4, 1891, after public advertisement, proposals were received, opened, and contracts awarded to the lowest bidders for 1892 ; the awards amounting to $\$ 525,758.00$, a decrease of $\$ 26,240.00$.

Bids were asked for the removal of garbage, waste, etc., by disposing of it on dumps, etc., and by cremation. The bids for the latter were found excessive. It is worthy of the consideration of Councils, whether the City should not upon its own land erect crematories and grant contractors the privilege of using them as a condition of their contracts. The spread of the City and improvements in the suburban districts are rapidly limiting the dumping ground for the deposit of waste and offal, and the greater distance that it has to be carted will so increase the expense that it will be necessary, at an early day, to determine the most expedient way to dispose of it.

The following is a comparative statement of the operations of the Bureau of Street Cleaning for the years 1890 and 1891:

The total Work done during the Year 1891, is as follows:

The expenses for Street Cleaning for the year 1891 were $\mathbf{8 5 6 9 , 7 2 8 . 0 0}$.

Bureau of Surveys.

Registry Division.-The report of the Chief of the Bureau gives in detail the work of the Registry Division, which has materially increased during the past year, in the preparation of plans for the opening of streets in the suburbs of the City, in making the many descriptive plans of properties to file for municipal claims; and since the removal of the office of the Recorder of Deeds to the City Hall, descriptions of property which were formerly made in that office are now made in this division of the Bureau of Surveys.

The work of the Registry Division of the Bureau of Surveys is shown by the following summary of its operations:

	1800	1891.
Number of certificates registered owners isesued.	7,771	10,022
Number isaued for use of the Law Department...	477	807
Receipts from certificates of registored owners.	\$1,048 00	\$2,617 00
Number of original lots plotted.	12,478	11,705
Number of transfers regintered.	21,054	22,865
Number of plans made for use of city departments, bureaus, etc	268	548
Number of examinations of registry plan books made by the pablic.	20,521	21,886
Number of deecriptions of property	82,027	34,070
Number of titles perfected	1,705	1,858
Number of certificates of legal opening of streets, issued to bureaus, otc.	4,842	3,071
Number of certificates of registered owners in municipal lien cases for Law Department.	2,468	6,527

Main Sewers.-There has been built within the year twenty main sewers, three sections of the Wissahickon Valley sewer, and one section of the intercepting sewer, aggregating 36,102 linear feet. Of the Aramingo Canal system, the Westmoreland Street sewer has been completed from Aramingo canal to the Delaware river. There are under contract four sections of the high level intercepting sewer along the Wissahickon valley; one section is carried on a stone arch viaduct, a span
of 116 feet. These extensions will probably be completed by midsummer.

Branch Sewers.-Of branch sewers there was an aggregate of 133,216 linear feet built; of branch sewers under private contracts, there were built 23,465 linear feet. The Bureau has insisted that in their construction all inlets requisite for surface drainage should be set and connected with the sewers, and the requisite manholes provided.

The Bureau has continued the testing of coment and materials before they are approved for the works, which secures a standard and uniform quality in them.

The following is a comparative statement of the operations of this Bureau in the active construction of work during the years 1890 and 1891:
Summary of Bridges, Main, Branch and Private Sewers built during the years 1890 and 1891.

	1800.		181.	
	No.	Linear feet.	Na.	Linear feet.
Bridges..................................o.............	10	...0...........	4	
Intereepting sewer (section)...................			1	3,184
Intercepting sewer connections..............	8	5,478		
Wimahickon Valley sewer (section).........	.-	\cdots	8	5,600
Storm water conduit, Falls Village.........		
Main eewers...	20	24,006	20	27,818
Branch sewers.................o....................	188	122,468	183	183,216
Private sewers.....................................	63	21,120	60	23,465
Total...	280	-178,102	284	$\dagger 192,788$
* 1890, equal to 32.793 miles.		+ 1891, equ	to 8	mileas

Bridges.-There have been completed during the year, the MeCallum street viaduct over Cresheim creek, and the bridge
on Second street over the tracks of the Richmond branch of the Philadelphia \& Reading R. R.

There are now under construction by the City, bridges at Kensington avenue over Frankford creek, at Oxford street over the Connecting R. R., and at the Falls, where a stone arch bridge, 56 feet span, is being erected to carry the tracks of the Norristown branch of the Philadelphia \& Reading R. R. over Penn street.

Walnut Street Bridge.-The piers for the river span of the bridge are nearing completion ; the post and plate girder construction of the west approach, under contract with the Pottsville Bridge Co., and the iron work of the east approach, under contract with A. \& P. Roberts \& Co., will be completed on time. Contracts have been awarded for the masonry, filling and paving of the approaches-the west approach to I. H. Hathaway \& Co., and the east approach to R. B. Malone \& Co. The contract for the bridge trusses in three spans over the river has been awarded to A. \& P. Roberts \& Co. If Councils make the additional appropriations necessary for the completion of the road bed of the river spans, the railings, and general finish, this bridge should be open for travel the latter part of the year 1892.

In this connection permit me to again call attention to the condition of the bridge continuing Girard avenue over the Philadelphis and Reading R. R., and of the timber bridge across the Schuylkill river at the Falls. These bridges have been previously referred to, under the head of the Bureau of Highways, as being very much out of repair.

Their condition is such that repairs are practically impossible, and the question of their reconstruction should receive the early attention of Councils, and appropriations should be made therefor.

The Philadelphia \& Reading Railroad Company, under Ordinance of December 26th, 1890, authorizing the revision of street grades and the construction of the Philadelphia \& Reading Terminal Railroad. from Twefth and Market streets
to Ninth and Green streets, is progressing with the work rapidly and in a satisfactory mauner.

Comparative statement of work upon bridges during the years 1890 and 1891.

Inlets.-In regrading and repaving streets, the requisite inlets to prevent surface water remaining on the streets are being located and connected with the sewers as such works progress, and in the building of new sewers, a sufficient number of inlets are located to secure a prompt and complete drainage of the surface water of the streets.

During the year, 337 inlets of all kinds were conatructed at a cost of $\$ 20,890.86$. Notwithstanding the great number of inlets that were constructed, the demand for them far exceeded the appropriation for this class of work.

The welfare of the City in the future depends very much upon the intelligent direction of the business of this Bureau ; in the revision of grades, the locating and rebuilding of sewers made necessary by changes and business development in the City; and in new sections, the lay out of roads and streets to conform with the natural topography of the ground, to secure the best gradients for streets and the best system of drainage, with the minimum amount of grading and the least damage to contiguous property; to avoid railroad crossings and provide necessary bridges for those that must be crossed. These are considerations all important to study and determine upon, in deciding upon plans for works devolving upon this Department.

District Surveyors.-The entire thirteen survey districts now come under the provisions of the law, which requires that all moneys received by District Surveyors be paid into the City Treasury. and that these officials and their assistants be paid fixed salaries. As the Surveyors and Regulators of the several districts are now responsible to the Chief Engineer of the Bureau of Surveys, the public has a right to expect more prompt and better service in the future.

All plans for improvements in the several districts will be approved by the Chief Engineer, that works in adjoining districts may be under one general supervision; it is expected that with this system the municipal engineering will be improved.

The net profits to the City for the year 1891 were $\$ 28,145.57$.

The following is a summary of the receipts and expenses of the District Survoyors paid fixed salaries during the years 1890 and 1891 :

Summary of Receipte and Expenses of District Surveyors.

- Not increame, sb,034 74.

The receipts and expenditures of this Bureau were largely in excess of any previous year.

The following is a comparative summary for the years 1890 and 1891 :

Comparative Statement of Receipts.

Year.	Receipts of Bureau.	Receipts of District Surveyors.	Total	Increase.
1890	\$30,018 49	\$65,177 68	\$05,196 12	
1891	46,246 96	98,155 80	143,402 26	84,206 14

Comparative Statement of Expenditures.

Bureau of Water.

During the past year the service has been improved by the introduction of 41 miles of additional distributing mains, making an aggregate of over 1,000 miles of water-pipes now in use by the city.

The following is a comparative statement of the total pipe laid, and of other work done during the years 1890 and 1891:

A new boiler house, stack and equipment of five new boilers have been completed at the Spring Farden Station; at Mt. Airy, a one million gallon pump taken from Roxborough, and a new steel boiler have been placed; at Frankford, the broken pump in connection with the Corliss engine was replaced and the engine strengthened.

The necessary repairs to the pumping engines and machinery at the several stations have been made, but there has been no increase in the pumping capacity; a $20,000,000$ gallon engine, under contract with the Southwark Foundry and Machine Company, will be finished and in operation before the first of July; this increase in the pumping capacity will more effectively utilize the East Park reservoir.

The following statement gives the number and type of engines, and their several aggregate capacities at the various stations:

\begin{tabular}{|c|c|c|c|c|}
\hline Pemping Station． \& \& Type of Engine \& \& Total． \\
\hline ｜Old Station．．．．．．．．．．．． \& 6 \& Simpeon Compound Rotary mo．．． \& 10，000，000 \& \multirow{10}{*}{96，000，000} \\
\hline \& 7 \& Marine Compound Rotary．．．．．．．． \& 20，000，000 \& \\
\hline 品 10 ．．．．．．．．．．． \& 8 \& Worthington Duplex．．．．．．．．．．．．．． \& 10，000，000 \& \\
\hline \& 11 \& Gaskill ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． \& 20，000，000 \& \\
\hline K ¢ \& 12 \& Worthington Duplex．．．．．．．．．．．．．． \& 6，000，000 \& \\
\hline on New Station．．．．．．．．．．． \& 9 \& « 1 ．．．．．．．．．．．．．． \& 15，000，000 \& \\
\hline u ．．．．．．．．．．．． \& 10 \& \(\cdots\)－ \& 15，000，000 \& \\
\hline Belmont．．．．．．．．．．．．．．．．．．．．．． \& 1 \& Worthington Duplex．．．．．．．．．．．．．． \& 5，000，000 \& \\
\hline 4 \& 2 \& \(\omega \quad\) u \& 5，000，000 \& \\
\hline ＂ \& 8 \& \(\omega \quad\)＂ \& 8，000，000 \& \\
\hline Roxborough．．．．．．．．．．．．．．．． \& 1 \& Worthington Duplex．．．．．．．．．．．．．． \& 5，000，000 \& \multirow{2}{*}{18，000，000} \\
\hline \(\cdots\) \& 2 \& 4 « ．．．．．．．．．．．．．．． \& 7，500，000 \& \\
\hline Roxborough Auxiliary \& 1 \& Knowles＇Pump．．．．．．．．．．．．．．．．．．．．．． \& 500，000 \& \multirow{3}{*}{12，800，000} \\
\hline \& 2 \& \％ 6 ．．．．．．．．．．．．．．．．．．．．．． \& 250，000 \& \\
\hline \(\cdots\) \& 8 \& \(\cdots \quad \omega\) \& 250，000 \& \\
\hline Mt．Airy．．．．．．．．．．．．．．．．．．．． \& 1 \& IDavidson Pump．．．．．．．．．．．．．．．．．．．．．． \& 1，000，000 \& \multirow{3}{*}{1，000，000} \\
\hline \begin{tabular}{l}
\(*\) \\

\end{tabular} \& 2 \& ＂6 ．．．．．．．．．．．．．．．．．．．．．．． \& 1，000，000 \& \\
\hline ＊．．．．．．．．．．．．．．．．．．．．．． \& 8 \& Knowles＇＊．．．．．．．．．．．．．．．．．．．．．． \& 1，000，000 \& \\
\hline Chentnut Hill．．．．．．．．．．．．．． \& 1 \& Knowles＇Pump．．．．．．．．．．．．．．．．．．．．．．． \& 250，000 \& \multirow{2}{*}{3，000，000} \\
\hline \({ }^{6}\) \& 2 \& Worthington Duplex．．．．．．．．．．．．．． \& 500，000 \& \\
\hline Frankford．．．．．．．．．．．．．．．．．．．．． \& \& Marine Compound Rotary．．．．．．．． \& 10，000，000 \& \multirow{2}{*}{750，000} \\
\hline 4 \& 2 \& Corlies Compound Rotary．．．．．．．．． \& 10，000，000 \& \\
\hline New House．．．．．．．．．．．． \& 1 \& Turbine Wheels．．．．．．．．．．．．．．．．．．．．．． \& 2，000，000 \& \multirow[t]{7}{*}{\(\mathbf{2 0 , 0 5 0 , 0 0 0}\)

$\mathbf{3 8 , 2 9 0 , 0 0 0}$}

\hline ＂，．．．．．．．．．．．． \& 8 \& ＂${ }^{\prime}$ \& 5，8：50，000 \&

\hline 宕1 4－．．．．．．．．．．．． \& 4 \& ＂\quad \& 5，330，000 \&

\hline 发 4 ．．．．．．．．．．．． \& 5 \& 60 \qquad \& 5，330，000 \&

\hline Ei Old Houso．．．．．．．．．．．．．． \& 7 \& 4 ¢ ．．．．．．．．．．．．．．．．．．．．． \& 5，100，000 \&

\hline ．．．．．．．．．．．．．． \& 8 \& ＂© ．．．．．．．．．．．．．．．．．．．．．． \& 5，100，000 \&

\hline 4 6 ．．．．．．．．．．．． \& 9 \& « « ．．．．．．．．．．．．．．．．．．．．． \& 5，100，000 \&

\hline \multicolumn{4}{|l|}{Total．} \& 184，540，000

\hline
\end{tabular}

The following is a comparative summary of the operations for the years 1890 and 1891 :

	1890.	1891.
Receipts from water rents..	\$1,958,551 95	\$2,057,417 39
" " fractional rents.	171.90115	200,888 36
" " water-plpes.......................................	141,884 27	188,180 98
" " City Solicitor's offlce...........................	38,367 73	84,394 49
" " penalties..	26,270 94	29,672 21
" " delinquent rents.	25,472 39	25,183 85
" "Chief Engineer's offlce.	9,730 83	6,503 70
" searches.	5,235 75	5,046 75
" " delinquent penalties...........................	3,622 69	8,495 00
Total..	\$2,381,087 70	82,500,762 73
	Gallons.	Gallons.
Pumped to reemrvoirs............................	51,698,508,699	55,665,648,000
Equal to gallons pumped 100 feet high.......................	84,501,451,686	93,490,106,725

Notr.-The "pumped to reservoirs," etc., includes $986,731,592$ gallons of repumpage to higher levels at Mount Ary, Roxborough, and East Park Reservoirs.
This deducted from the total pumped gives $\mathbf{5 4 , 6 7 8 , 9 1 6 , 4 0 8}$ gallons as the total consumption.
The cost of punpage is calculated on the total pumpage and the consumption per capita on the smaller quantity.

	$\begin{gathered} 1890 . \\ \text { Gallons. } \end{gathered}$	1891. Gallons.
Pumped by water power.........	12,862,987,130	11,880,824,570
Pumped by steam power..	39,335,521,569	44,284,823,430
Largest quantity pumped in 25 hours..........................	170,600,577	183,421,163
Smallest quantity pumped in 24 hours...............	61,956,522	73,057,433

Expenditures.

	1890.	1891.
Carrent expenses...	\$712,497 87	8781,227 88
For extenaions..	280,866 92	749,066 21
Total..	9098,384 29	31,530,294 04

The cost of pumping one million gallons lifted 100 feet high was $\$ 2.99$, or 6 cents less than in the previous year, and $\$ 2.52$ less than in 1880.

Twenty per cent. of the total pumpage was by
water power, the turbine wheels using........... 341,424,737,100 gallons
To pump... 11,380,824,570 "
In a message to Councils, September 3d, 1891, the necessity for additional pumping engines at the several stations was presented, and under the annual appropriation made by Councils for the year 1892, the Department expects to contract for an additional $20,000,000$ gallon engine for the Spring Garden station, for a $10,000,000$ gallon engine for the station at Belmont, for a $10,000,000$ gallon engine at Roxborough pumping station, for a $15,000.000$ gallon engine for Frankford pumping station at Lardner's Point on the Delaware river ; these additions will materially benefit the service.

The Water Committee, under direction of the Honorable Bodies of Councils, has prepared an exhaustive report of sta-
tistics of the Water Department of the City, which contains information of the necessities of the Department.

The important matter of adopting a plan for the future water supply to the City should receive the prompt consideration and action of Councils, and the Department will investigate and report upon such plans as Councils may direct.

While an ample and full supply of water is a necossity for the health and comfort of the people, and for the prosperity of the business interests of the City, the consumption per capita, 140 gallons per day, is so largely in excess of other cities that the excess is largely chargeable to waste or misuse.

To ascertain the relative consumption of water in manufacturing and in residence districts, and to determine if there was loss by leakage, meters were placed on the City mains in circuits controlled by stops, and the amount of water passing was registered; the average quantity per day from 14 days trial in the district bounded by Broad and Thirteenth, Walnut and Spruce streets, was 113 gallons per capita; between the hours of 6 A . M. and 6 P. M. 66.2 gallons, and between the hours of $6 \mathrm{P} . \mathrm{M}$. and $6 \mathrm{~A} . \mathrm{M} .46 .8$ gallons. Upon investigation the cause of the consumption of water in the district mentioned, between the hours of $6 \mathrm{P} . \mathrm{M}$. and 6 A . M., was found to be principally from the constant running water in urinals through the night.

In a manufacturing district the amount of water registered was at the rate of 1,552 gallons per day per capita.

The report of the Chief of the Bureau of Water gives the detail of the population and the properties supplied; in the latter district the charges as per present schedule of rates per annum is $\$ 1,792.00$, and the price if paid for by meter measure would be $\$ 17,520.00$.

No doubt there are throughout the city many cases where water left running through the night is wasted, which additional legislation would not stop. While the introduction of meters would be an expense, they would tend to check the waste, and Councils should direct that meters be placed upon
the water supply to all manufacturing establishments, commercial houses, hotels, apartment houses, public buildings, theatres, libraries, and office buildings, and the charge for water be by meter measurement at a rate to be fixed by ordinance.

For two years the Water Committee of Councils has had under consideration the selection of a site for a reservoir to supply the northwestern district of the City, which has a population approaching 300,000 people, whose supply is from direct pumpage, and they are required to use the water with the discoloration and any impurities put into the river by freshets.

The Department has continuously during this time recommended the Queen Lane site as having superior advantages in location for supply and distribution, of proper elevation for the immediate district, and capable of distributing a supply to 19 square miles of territory. The matter has been postponed from time to time by the application of a few protestors, who claim that their property adjacent to the site will be damaged, notwithstanding the fact that no injustice can be done them, as the Courts will secure to them, and the City will pay, whatever damages they are entitled to. This matter is still before the Water Committee.

The necessary repairs have been made to the reservoirs, and the walks and driveways to them improved. The first portion of the contract with John B. Reilly, for the construction of the Roxborough reservoir, is about finished, and the contract for the completion has been executed by him ; during the present year it is expected that the reservoir will be in service, and provide at all times subsided water for the districts it is to supply.

The following is a statement of the location, date of completion, elevation and capacity of the City's reservoirs :

Name of Reservoir.	Location.	Date of completion.	$\begin{aligned} & \text { Height } \\ & \text { abore City } \\ & \text { datum. } \end{aligned}$	Capacity in Gallons.
	East Fairmount Park..	$\left\{\begin{array}{l}1816 \\ 1891 \\ 1877 \\ 1876 \\ 1886 \\ 1886\end{array}\right\}$	94	26,350,800
	8ixth and Lehigh avenue..	$\left\{\begin{array}{l}\text { 1888 } \\ \text { and } \\ 1871\end{array}\right\}$	114	80,894,000
Spring Garden \qquad Corinthian	Twenty-sixth and Master streets... Corinthian a ${ }^{\text {a }}$ (enue and Poplar street..........................	1841	120 120	$12,000.000$ $87,811,400$
害	East Fairmount Park...	$\left\{\begin{array}{l} 1887 \\ 1888 \\ 1889 \end{array}\right\}$	183	$\left\{\begin{array}{r} 62,787,632 \\ 806,400,622 \\ 304,786,800 \end{array}\right.$
Frankford	Oxford Turnplke and Comly street...	1877	167	36,046,000
Belmont. \qquad	Weat Fairmount Park. ..	1870	212	89,758,000
Mount Airy	Allen's lane and Mower street, Germantown...............................	1851	363	4,546,000
Roxborough ..	Ridge and Shawmont avenueg..	1866	866	12,888,000
Manatawnatanks-2.....................................	Manatawns and Ridge avenues................................i.i........	1878	442	100,000
Cheatnut Hill tank.......	Hartwell avenue and Cheetnut Hill Railroad, Chestnut Hill.........	1860	481	40,000
Total...				869,288,814

The City should have reservoirs to contain ten days supply; accident to the pumping engines, of which there is no relay at either station, causes the City to be largely dependent upon its reservoirs for water supply in its many homes, its manufacturing industries, and for protection from fire; prudence in management would require the additions to be made at the earliest time.

The reservoirs have been located at heights to supply specific districts of the City according to their elevations; for the supply south of South street and between the Delaware and Schuylkill rivers, the reservoir capacity is $75,692,200$ gallons, two and one-half days storage supply at present.

The East Park reservoir, capacity $673,874,614$ gallons, fourteen days storage supply for the City between South and Vine streets, between the rivers, also for the north of Vine street east of Broad street to Jefferson street, east of Ninth street to Lehigh avenue, south of Lehigh avenue to Kensington avenue. This reservoir is also utilized for below South street when the Schuylkill river continues muddy for several days.

Wentz Farm reservoir, capacity $36,046,000$ gallons, two and one-half days storage supply for Frankford, Bridesburg, and below Lehigh avenue to the connection of the supply from the East Park reservoir. By laying a distributing main from the East Park reservoir along Lehigh avenue to Frankford avenue, a portion of the district now depending upon Wentz Farm reservoir would be supplied from East Park; while this would reduce the storage capacity of the East Park reservoir to twelve days for its district, the reserve storage in the Wentz Farm reservoir would then be increased from two and one-half days to seven days for its district.

Roxborough reservoir, capacity $12,838,000$ gallons, to be increased by the new reservoir $148,000,000$ gallons, making a total capacity of $160,838,000$ gallons, supplies the Twentyfirst and Twenty-second Wards, the Twenty-eighth Ward above Westmoreland street, including Tioga, while the high 5^{15}
service station at the reservoir, by tanks, supplies the high district of Roxborough and the adjoining country.

Mt. Airy supplies a portion of Germantown, with a high service station for Chestnut Hill; the Roxborough and the Mt. Airy reservoirs jointly will provide twelve days supply for the above districts.

Belmont reservoir, capacity 40,000,000 gallons, less than three days supply. The higher districts of West Philadelphia should be supplied by a standpipe with a high service station.

Direct Pumpage.-The Fifteenth, Twenty-eighth, Twentyninth, and Thirty-second Wards, and one-half of the Twentieth Ward, are supplied with water by direct pumpage.

These facts show that when the additional pumping engines and mains are provided, there is sufficient storage of water for all districts, except three-south of South street, the direct pumpage district, and West Philadelphia.

As there is at present two and one-half days supply for the southern section of the City by reservoirs, it may be desirable to retain the Cambria site for the construction of a reservoir for additional storage for the lower portion of the City, to meet the demand that the improvements of the southern section, along the river front and toward League Island, will necessitate.

Filtering.-A filtering plant may be established with advantage for West Philadelphia or Frankford. The lower, central and northeastern parts of the City are now supplied with subsided water from the East Park reservoir. The Twenty-first and Twenty-second Wards may be provided from the New Roxborough reservoir. West Philadelphia, supplied from the basin at George's Hill, has the benefit of only three days subsidence, and when the water in the river continues muddy for a longer period it is supplied muddy. The same condition applies to Frankford.

The subject of filtration on a large scale is a matter of experiment, both as to cost and maintenance. As the quality
of water is improved by filtration, it is desirable that a system be tried. It is recommended that proposals be invited, by advertisement, for an experimental filtering plant at Belmont or at the Frankford station.

Distribution.-It should be here stattd that the growth of the Water Department, from the construction of the first large reservoir to the present, the additions and increases havebeen made with skill and to the interest of the City, as the following history will show, although in public argument it has been implied otherwise.

In 1815 the first reservoir for the supply of the City was built upon Fairmount Hill, immediately adjacent to the steam pumping plant on the Schuylkill river. This basin was admirably located, the pumping mains being very short, and the elevation of the basin, $9+$ feet C. D., was more than adequatefor the supply of the built-up portion of the City, which was on the lower ground along the Delaware river, and extending, probably, as far west as Tenth street. The appliances for the use of water were almost invariably limited to a hydrant in the yard or public pumps upon the footwalks. A lead pipe conducted the water from the supply pipe in the street to cedar tanks set in the ground near the curb. The flow of the water was regulated by a copper ball, and an ordinary pump lifted the water for domestic use and fire service.

Additions were made to this reservoir until 1836, when it was completed, as at present. It was used for the supply of the City, and the Districts of Moyamensing, Southwark, and, until 1844, for the Districts of Spring Garden, North Penn, Northern Liberties, Kensington and Richmond.

In 1844 the Incorporated Districts north of the City built the Morris City, or Spring Garden reservoir, at Twenty-sixth. and Master streets, which was at a proper elevation for efficient service at that time. Owing to a disagreement between these districts, Kensington constructed, in 1852, a reservoir at Sixth and Lehigh avenue for its own use.

About the same time, West Philadelphia began works of its
own, consisting of a pumping plant and a standpipe at Thirtyfifth and Aspen streets, which were completed about the time of consolidation. These have since been abandoued.

The continued improvement to the City proper and the Southern Districts required a further reservoir capacity, and the Corinthian avenue reservoir was constructed in 1852.

About 1851 the Germantown Water Works were built by a company, in which a Queen of Spain held the principal part of the stock as an investment. The water was pumped from a dam on Tulpehocken Creek into a stand-pipe close by, and to a reservoir at Mt. Airy. They were purchased by the City in 1866.

The Chestnut Hill Water Works were built by a company about 1860. At first they consisted of a pump driven by a water wheel, and a stone tower, upon which was a cedar tank for a reservoir. The water required for moving the wheel was taken from a large reservoir filled from springs and surface water, and the supply for use was drawn from springs near the station and at the County line. The water power being inadequate, a steam plant was subsequently constructed. In 1873 these works came into the possession of the City by purchase.

In 1866 works for the supply of Manayunk and Roxborough were built, consisting of a steam pumping station at Flat Rock Dam, on the Schuylkill River, and a reservoir on Shawmont avenue, near Ridge road, and subsequently a high service station was located at the reservoir to pump into tanks at Manatawna.

In 1870 the old West Philadelphia Works being in a dilapidated condition, new works were built at Belmont and a reservoir at George's Hill. These works were suitably located for West Philadelphia at that time.

In 1877 the Frankford Water Works, consisting of a pumping station on the Delaware River, at Lardner's Point, were constructed.

In 1873 the East Park Reservoir was projected for the
supply of all of the lower part of the City, between the two rivers. It was completed in 1889.

A reservoir is now being constructed at Roxborough for additional storage for Germantown, Roxborough and Manayunk.

While this work has been done as necessity required it, it has been judiciously done, and for efficiency could not have been laid out better.

Present Supply:-A map of the City accompanying this communication, marked No. 1, shows the present arrangement of the distribution.

The lowest district comprises all that part of the City that can be supplied from:

Fairmount, with an elevation of 94 feet, C. D., Corinthian Avenue, with an elevation of 120 feet, C. D., and Spring Garden, with an elevation of 120 feet, C. D.,
which will supply all that part of the City below South street between the two rivers, comprising the First, Second, Third, Fourth, Twenty-sixth and Thirtieth Wards, with an area of 14 square miles. The population in 1890 was 218,506 , confined principally to the upper half of the district. The southern part is of a low elevation, most of it at present below high tide in the rivers. It will, however, be filled up and used for manufacturing establishments, to be located along the river fronts and the several railroads passing through it.

The combined capacity of the reservoirs is $75,692,200$ gallons, which is a supply for two-and-one-half days.

The reasons for supplying this section from these reservoirs are as follows:

1. They are of sufficient elevation to supply this low ground, only a small part of the Thirtieth Ward being as high as 40 feet C. D.
2. Fairmount Works are a valuable and cheap pumping plant. The cost of pumping by water power is but 91 cents per million gallons lifted one hundred feet high, as against $\$ 3$ by steam. The wheels were not constructed to pump
higher than 120 feet, and to deliver water into the East Park Basin requires more power than they are able to stand.

For the above reasons it is not advisable to abandon the Corinthian Avenue and Spring Garden Basins, but to provide at an early day an additional reservoir.

The East Park Reservoir, with an elevation of 133 feet, in connection with the Lehigh Avenue Basin, with an elevation of 114 feet, supplies the following named wards: Fifth, Sixth, Seventh, Eighth, Ninth, Tenth, Eleventh, Twelfth, Thirteenth, Fourteenth, Sixteenth, Seventeenth, Eighteenth, Thirty-first, and about half of the following: Nineteenth, Twentieth, and Twenty-third, comprising an area of 8.003 square miles, with a population of 335,307 . The storage capacity $700,268,614$ gallons, or an apparent supply for fifteen days.

During low water in the Schuylkill when the wheels at Fairmount cannot be run, and when the river is objectionably muddy, this reservoir is drawn upon for the supply of the lower wards and the direct pumpage district.

Frankford Reservoir supplies the .I'wenty-third, Twentyfifth and Thirty-fifth Wards, with half of the Nineteenth and Thirty-third Wards, the water mingling with the East Park water without any distinct dividing line. As before stated, if Frankford Reservoir be confined to the supply of the Twenty-third and Thirty-fifth Wards, it will have a storage capacity for seven days, and the storage in the East Park Reservoir will be reduced to twelve days.

The Direct Pumpage District, comprising the Fifteenth, Twenty-ninth and Thirty-second, and about half of the Twentieth and Twenty-eighth Wards, with an area of 6 square miles, has a population of 182,949 . At present it requires about $30,000,000$ gallons for daily supply.

This district, with the addition of about twelve more square miles, will constitute an intermediate service district, intended to be supplied with water from a reservoir located on Queen lane, with an elevation of 234 feet C. D.

This reservoir is recommended there because of its central position, its elevation in connection with possible future supply, and for the reason that if placed on higher ground very little additional territory can be supplied, while the cost of pumping will be considerably increased.

West Philadelphia is at present supplied from the Belmont Reservoir, which contains less than three days storage. Its population is about 100,000 , and the area 21 square miles, 8 of which are below a contour line of 50 feet C. D. 9 between 60 feet and 150 feet C. D., and 4 above 150 feet C. D.

The lower part, eight square miles, now being built up, should in the future be supplied by a reservoir at an elevation of about 125 feet, unless water be obtained by gravity. The 9 square miles should be supplied by a reservoir about 230 feet in height, and the higher district by a standpipe with a high service pumping station.

The upper Distribution District, comprising the Twenty-first, one-half of the Twenty-eighth, and nearly all of the Twentysecond Wards, has an area of about 23 square miles and a population of 82,892 . It is at present supplied from the Roxborough and Mt. Airy reservoirs, which have a capacity of $17,389,000$ gallons, and a storage of but little over one day.

The new reservoir now being built will have a capacity of $148,000,000$ gallons, and will increase the storage to twelve days.

This reservoir can be supplied by pumpage from any conduit properly constructed hereafter from the Perkiomen and Tohickon creeks.

The high service stations pump water from the Roxborough and Mt. Airy reservoirs for the supply of Manatawna, Upper Roxborough, Chestnut Hill, and Upper Germantown, comprising an area of about five square miles, and a population estimated at about 12,532 .

Map No. 2 shows the divisions of the City as proposed to be supplied when the necessary reservoirs shall have been
built, and when the increase of population in the now raral districts will require additional and higher service.

The lower district, below South street, now supplied from Fairmount, will be the same territory as at present, but an additional reservoir will be needed as the population increases.

The East Park District is increased and carried farther to the northeast, moving the Wentz Farm or Frankford District north of the Frankford Creek, and continuing it towards the northeast as this section becomes built up.

When the high ground of the Twenty-third and Thirtyfifth Wards shall require a water supply a new reservoir will have to be built.

What is now the direct pumpage district will be supplied from the new reservoir at Schuetzen Park, and its territory will be increased by taking from the district now on the Roxborough and Mt. Airy basins, all ground below a contour of 165 feet C. D. This will decrease the territory now supplied from Roxborough, and limit its area between the contours of 165 feet C. D. and 300 feet C. D. Above 300 feet C. D. will be a high service district, which must depend upon direct pumpage from reservoirs and standpipes for its supply. West Philadelphia can be economically divided into three districts, the lowest comprising the low ground in the southern part of the Twenty-seventh Ward, can be supplied from a reservoir located at a height of 125 feet, which will give a good pressure to all parts below the contour of 60 feet.

The central part is to be supplied from a reservoir located at about a height of 230 feet, which will give proper service between the contours of 60 and 150 feet C. D., above which the supply must be by direct pumpage and standpipe.

Recapitulation of Map No. 2.

District.	Area Bg. Miles.	Population.	Highest Point.	Lowest Point.
Fairmount	14	218,506	41	0
East Park	11	415,000	- 60	0
Frankford, Low Service..............	$13)$		\{ 90	0
Frankford, High Service.............	29)	86,00	280	90
Schuetzen	18	208,000	165	60
Roxborough.............................	12)		$\{800$	165
Roxborbugh, High Service	11)	70,000	\{440	300
Belmont, Low Service	87		(60	0
Belmont........	1)	100,000	150	60
Belmont, High Service..........	4		292	150

Map No. 1 shows the present distribution.
Map No. 2 shows the distribution as it should be.

Director's Office.

With the increased growth of the City the detail work of the office has increased proportionately in the general correspondence with the public and with each Bureau of the Department.

The following is a statement of the expenditures of the Director's Office for the year 1891:

Item 1. Sa	\$14,143 62
Item 2. Horse keep, etc	50000
Item 3. Printipg, stationery and incidentals............	2,097 12
Total.	\$16,740 74

The suggestions for new work in the several Bureaus have been stated in detail under their respective heads, but I would respectfully ask your especial consideration to the following:

Gas.-The necessity of the City increasing its facilities for the manufacture of gas, its holder capacity, the extension of mains, and that provision be made that the City shall have exclusive ownership of the gas works.

Highway. -That an ordinance should be passed making it conditional that a dressed granite curb shall be set upon all streets hereafter prior to paving or repaving.

The importance of early legislation by Councils requiring that before paving or repaving any street, connections be made with all underground works, said connections to be led to the inside line of the curb by the City, and be paid for thereafter by those applying for attachment thereto.

The importance of more liberal appropriations for the maintenance of macadam roads.

The necessity of further legislation to empower the Department to compel property owners in suburban districts to comply with the ordinance relative to the grading, curbing and paving of sidewalks.

The importance of more liberal appropriations to the Department for repairing and painting bridges.

The propriety of the City adopting concrete foundations for all paving and repaving of the principal business streets.

Lighting.-The important necessity of the City establishing and owning its electric light plant for public lighting.

Street Cleaning.-The condideration of establishing crematories for the burning of garbage, etc., and granting the contractors the privilege of using them as a condition of their contract.

Surveys.-The renewal of the bridge continuing Girard avenue over the P. \& R. R. R., and the timber bridge across the Schuylkill River at the Falls.

The additional appropriation required to complete the Walnut Street bridge.

The necessity of additional appropriations to enable the completion of main sewers, and for the construction of those required for the proper drainage of newly-improved portions of the City.

The early consideration of a subway to receive all underground work to be placed in the streets of the City under future ordinances.

Water.-In the matter of substituting larger mains for smaller ones, to secure a better supply of water in the business portion of the City, the Department asked for $\$ 100,000$, and the appropriation made was $\$ 25,000$; the additional $\$ 75,000$ should be provided for this important work.

The demand for a subsiding reservoir for the water supply of the northwestern section of the City, and for additional mains.

The passage of an ordinance providing that meters shall be placed upon the water supply of all manufacturing establishments, hotels, etc., as herein suggested, the charge to be fixed at a lower price and proportionate to the cost of pumpage.

It is recommended that proposals be invited, by advertisement, for a filtering plant at either Belmont or Frankford stations.

Receipts and Expenditures.-The appropriations, expenditures and receipts of the Department for the year 1891, are set out in the following table in detail by Bureaus, and also in totals for the year 1890.

Appropriations, 1892.
The following is an abstract of the ordinance making appropriations to this Department for the year 1892, with a statement of balances available from previous years for work ordered, and for which contracts are executed :

Bureaus.	Annual appropration for the jear 1892.	Balance available from previous years.	Total.
Director's Office.............................	\$18,520 00	..-	\$18,520 00
City Ice Boats................................	87,400 00	37,400 00
Bureau of Gas	2,808,268 98	854,200 25	2,862,469 18
Bureau of Highways	886,124 00	182,852 48	1,068,476 48
Bureau of Lighting........................	706,929 00		706,929 00
Burean of Street Cleaning................	587,678 00		537,678 00
Bureau of Burveys	1,108,826 00	787,280 68	1,895,556 63
Bureau of Water.	1,348,394 00	108,081 92	1,456,475 92
Total.................................	87,451,639 98	81,181,865 28	88,583,505 21

In concluding this report, it is with muoh satisfaction that I mention the faithful and able assistance of the Chief Clerk and the attention to duty by all the employes in my office; also the hearty co-operation of the Chiefs of the several Bureaus in the conduct of the business devolving upon this Department.

Thanking you, sir, for valuable assistance and the earnest support you have uniformly given me, I have the honor to be.

Very respectfully yours,
JAS. H. WINDRIM, Director.

ANNUAL REPORT

OF THE

BUREAU OF WATER,

FOR THE YEAR 1891.

OFFICERS

OF THE

BUREAU OF .WATER.
 \qquad

Chief,
JOHN L. OGDEN.
Assistants:
Allen J. Fuller,
William Whitby.
Draughtemen:
John E. Codman, Wartin Marphy, William Samon, John R. Gorman.

Chief Clerk-Job T. Hickman. Assistant Clerk-James G. Dixon. Correspondence Clerk-P. DeHaven.
Search Clerk-H. J. Johnson.
Assistant Search Clerk-William J. Duffy. Clerk-Thomas Spence. Assistant Clerk-K. McNeal. Assistant Clerk-J. J. Barney. Time Clerk-W. J. Innes. Pipe Inspector-Theodore S. 8. Baker Pipe Clerk-George G. Whitby. Messenger-Haines Lewis.

Telephone Operators:
Mattie Whittingham, Calvin Craner.
General Superintendent, FRANK L. HAND.
Clerk to General Superintendent-John A. Hayes.
Assistant Clerk to General Superintendent-John B. Wright.
Engineers at Pumping Stations:
Fairmount-Engineers, William H. Cubbler, John W. Bronson.
Spring Garden-Engineers, David Pyke, H. A. Gideon, Abraham Stott, John L. McGinnis.
Telephone Operator-Fannie Shields.
Belmont-Engineers, William Kiner, Thomas Seddon.
Roxborovgr-Engineers, Joshua Bartley, Archibald Weir.
Mount Airy-Engineers, Henry W. Everly, William Fletcher.
Chestnut Hill-Engineer, Lewis Culp.
Frankford-Enyineers, Charles Douglas, William Maxwell.

Works-General.

Foreman Carpenter-Henry Guest.
Foreman Bricklayer-Frank A. Mooney.
Foreman Stonemason-Frederick Geiger.
Foreman RiggeJames Forrest.
Foreman Painter-Charles Ravenor.
Foreman Laborer-Matthew J. Richmond.
General Storekeeper-S. C. Buchanan.
Electrician-Henry P. Morgan.
Superintendent of Shop-James H. Dean.
Clerk to Superintendent of Shop-Jonathan Bonsall.

Purveyors:

First District, John H. Holmes. Clerk, William J. Mackey.

Genoral Foreman, James Humes. Foreman of Repairs, W. W. Wellington. Office, 1120 Wharton street.

Second District, David A. Craig. Clerk, Charles H. Green.
General Foreman, Michael Young. Foreman of Repaira, Edw. Homan. Office, 918 Cherry street.

Third District, Charles J. Lowry.
Clerk, J. A. Spanagle.
General Foreman, Elias Abrams. Foreman of Repairs, Wm. Magee.
Office, 1420 Frankford avenue.
Fourth District, John Montgomery.
Clerk, Arthur B. Cook.
General Foremen, George W. Showaker, James H. Forbes.
Foreman of Repairs, James Hutchinson.
Office, Twenty-sixth and Master streets.
Fifth District, Henry Dawson.
Clerk, F. J. Cornman. General Foreman, Charles Frank.
Office, Lyceum Building, Roxborough.
Sixth District, George H. Laut.
Clerk, William D. Kinsler. General Foreman, Samuel Loeb. Office, Town Hall, Germantown.

ANNUAL REPORT

of ter

BUREAU OF WATER,

For the year 1891.

Philadelphia, January 30, 1892.

James H. Windrim, Esq., Director Department of Public Works.

SIr :-Whe operations of the Bureau of Water for the year 1891 are herewith respectfully submitted.

Receipts.
The following tables furnished by the Receiver of Taxes show in detail the receipts from water rents and other sources.
6^{15}
Total Receipts Bureau of Water for the Year 1891.

Revenue for Ten Years, 1888 to 1891, inclusive.

Years.				\$		$\begin{aligned} & \text { \& } \\ & \text { A } \\ & \mathbf{\$} \\ & \mathbf{\$} \end{aligned}$	¢ ¢ \$	8 8 ¢ ¢ did		Totale.
1882	878,543 01	\$11,479 18	81,295,419 87	818,016 23	\$49,529 90	834,979 52	\$7,515 88	\$21,421 05	81,516,904 64
$1883 ~$	69,995 84	10,310 00	1,380,882 17	23,280 44	67,088 10	45,858 09	8,515 11	21,144 41	1,627,069 16
1884...............	19,837 72	2,492 97	1,566,027 57	22,797 76	77,557 40	71,542 00	46150	10,670 89	21,098 20	1,792,486 01
1885................	11,267 25	1,561 03	1,567,031 94	22,298 78	101,643 88	92,182 18	1,988 75	9,197 00	18,993 23	1,826,164 04
1886.,.............	15,049 50	1,964 42	1,637,296 69	21,877 89	97,219 62	122,743 91	2,960 00	10,121 36	24,594 95	1,983,828 84
1887................	19,040 87	2,705 79	1,721,488 83	24,453 03	115,939 21	106,602 48	3,412 75	7,287 61	29,504 04	2,030,434 61
1888.	13,996 04	1,948 54	1,793,432 38	23,584 86	113,550 16	123,667 85	4,158 25	7,742 45	22,846 97	2,114,926 50
1889.	23,407 23	3,332 78	1,848,542 49	24,247 95	143,394 73	149,611 63	5,056 25	11,363 70	33,043 09	2,241,999 85
1890.	25.47239	3,622 69	1,958,551 95	26,270 94	171,901 15	141,884 27	5,235 75	9,730 83	38,967 73	2,881,037 70
$1891 . .$.	25,183 85	3,495 00	2,057,417 39	29,672 21	200,868 36	138,180 98	5,046 75	6,503 70	34,394 49	2,500,762 73
Totals.............	8301,792 70	842,912 40	\$16,826,091 28	\$236,000 09	\$1,138,692 51	\$1,037,247 91	\$28,320 00	\$88,648 53	\$265,408 16	\$19,965,113 88
Comparative Statement.										
1891...	$\begin{array}{r} 825,18385 \\ 25,47239 \end{array}$	83,495 00	$\begin{array}{r} 82,057,41739 \\ 1,958,55195 \end{array}$	$\begin{array}{r} 829,67221 \\ 26,27094 \end{array}$	$\begin{array}{r} 8200,86836 \\ 171,901 \quad 15 \end{array}$	$\begin{array}{r} 8138,18098 \\ 141,884 \quad 27 \end{array}$	$\begin{array}{r} 8,04675 \\ 5,29.775 \end{array}$	$\begin{array}{r} \$ 6,50370 \\ 9,73083 \end{array}$	$\begin{array}{r} 83,39449 \\ 38,36773 \end{array}$	$\begin{array}{r} \$ 2,500,76273 \\ 2,381,03770 \end{array}$
1890.		3,622 69								
Increase..			\$98,863	83,401 27	828,96721					8119,725 03
Decrease.......	828854	69			83,703 29	818900	\$3,227 13	\$3,973 24

Fractional Rents 1891.

Months.	Rent.	Ferrules.	Repairs.	Meters.	Totals.
Januaryl......................	4,355 30	24900	17200	13,978 66	818,758 96
February.....................	5,684 18	63600	7200	12,846 60	19,238 78
March........................	9,026 64	1,620 00	80000	50016	11,44680
A pril	9,827 59	2,662 00	26400	7,850 08	20,603 62
May...........................	6,988 15	2,771 00	88400	8,631 74	18,774 89
June...........................	6,705 65	2,981 00	85200	2,407 22	12,896 87
July...........................	4,543 89	2,847 00	51225	13,890 11	21,293 25
August........................	8,169 78	2,494 00	86825	8,108 45	14,185 48
September	4,114 55	2,662 00	30000	2,842 96	9,919 51
October.......................	2,801 15	3,148 00	61800	24,002 75	80,569 90
November	1,915 74	3,858 00	50300	2,598 99	8,872 78
December....................	8,490 90	64400	22500	10,498 67	14,858 57
Totals....................	62,623 52	26,019 00	4,07450	108,151 84	200,868 86

The revenue from all sources has exceeded two-and-one-half millions of dollars, and shows an increase over the previous year of $\$ 119,725.03$.

The greatest increases were in the items of water rents, $\$ 98,865.44$, and fractional rents or new permits for the use of water, $\$ 28,967.21$.

The receipts from delinquent rents and penalties were less than during the previous year, as were also the items for water-pipe and collections by the Law Department.

Appropriations.

The sum of $\$ 783,603$ was appropriated for current expenses, and $\$ 745,000$ for extensions. There was available from the previous year the sum of $\$ 352,080.48$, the total being $\$ 1,880,683.48$.

For extensions the principal items were:
For the new Roxborough reservoir.............................. $\$ 515,000$.
For new supply mains... 321,729
For new engine at Spring Garden.............................. 72,500
For new engine at Roxborough................................. 75,000
For new boilers at Spring Garden and Mt. Airy............ 20182
For new boiler house and stack at Spring Garden......... 14,595
For alterations to engine house at Spring Garden.......... $\quad 6,000$

Expenditures.

Of the amount merging, $\$ 149,000$ had been set aside for the completion of the new Roxborough reservoir; the contract had been executed, but owing to some delay it did not reach the office of the City Controller until after December 31.

The sum of $\$ 75,000$ was intended for a new ten million gallon engine at the Roxborough pumping station. The engine had been advertised for, but the bids were not received before the end of the year.

The balance was for engineering expenses connected with the construction of the reservoir and for alterations to the engine house at Spring Garden station.

In the appropriation ordinance for 1892 a provision was made that these items should not merge, but the ordinance was not approved until after January 1 , in consequence of which the City Controller merged $\$ 242,307.52$ into the City Treasury, and the Bureau of Water was deprived of this amount for the following year.

For expenditures in detail see Appendix B.

Appropriation and Expenditures.

Appropriation and Expenditures-Continmed.

The total number of gallons pumped was as follows:

Fairmount Station. 11,380,824,570			
Spring Garden	tion	30,874,325,871	
Belmont Station..		5,278,353,709	
Roxborough Station.		3,745,192,134	
Chestnut Hill Station		30,726,841	
Frankford Statio	3,369,493,283	
Total.			54,678,916,408
Supplementary Litu.	Roxborough...............	17,125,732	
	Mount Airy...................	524,406,500	
	East Park	445,199,360	
Total.			986,731,592
Grand total.			$\overline{55,665,648,000}$

92
Total Gallons Pumped During 1891.

Month.	Watar Power.	Steam Power.	Totals.	Average gall'ns per day.
January..................	1,003,436,777	3,258,087,384	4,261,524,161	129,700,366
February	1,072,570,157	2,484,162,029	3,506,782,186	125;240,435
March....................	1,102,117,118	3,098,122,066	4,196,239,179	134,171,173
April.....................	1,095,652,170	3,048,120,922	4,148,773,092	138,125,769
May.......................	1,061,441,558	8,765,962,475	4,827,407,088	155,722,807
June.....	691,278,478	4,011,491.698	4,702,766,176	156,758,839
July.......................	811,751,184	4,272,980,266	8,084,681,450	164,021,982
Auguat	1,012,777,592	4,191,114,829	5,206,892,421	166,021,543
Soptember	986,809,102	4.145,892,802	5,182,701,404	171,090,046
October..	749,213,467	4,204,118,849	4,953,331,816	159,784,897
November.	781,996,447	4,126,738,955	4,908,729,802	163,624,326
December................	1,011,782,525	3,730,087,755	4,741,870,280	149,472,292
Totals	11,380,424,570	44,284,823,480	55,665,648,000	152,508,624

The following table shows the gallons pumped, the cost per million gallons, and the daily consumption per capita during the ten years from 1882 to 1891, inclusive:
Pumpage Tables for the years 1882 to 1891, inclusive.

Year.	No. of gallons pumped to Reservoirs.	No. of gallons pumped 100 feet high.	Cost per millon gallous pumped 100 ft . high.	Gallons per capita per day.	Estimated population.
1882	24,691,440,430	37,873,303,258	$\$ 66$	76	890,060
1883	25,284,957;251	37,949,320,701	651	75	911,000
1884	25,495,179,353	39,001,865,294	554	74	932,000
1885	25,165,020,072	39,908,901,886	470	72	953,000
1886	28,658,966,569	46,255,361,203	413	80	975,000
1887	32,426,779,765	51,289,948,831	399	89	995,000
1888	37,068,763,428	59,483,681,199	449	100	1,020,000
1889	42,518,919,781	69,034,118,434	387	110	1,050,000
1890	51,698,508,699	84,501,451,686	305	131	*1,046,000
1891	55,665,648,000	93,490,106,725	299	140	1,071,672

- U. S. Census.

The total gallons pumped, including the high service, were $55,665,648,000$, an increase over the previous year of $3,967,139,301$, or seven per cent.

There were pumped for the high service supply a total of $986,731,592$ gallons, which, deducted from the total pumped, gives $54,678,916,408$ the actual consumption.

In the number of gallons consumed there was an increase of $4,405,019,930$ over the previous year.

About six per cent. of the water was taken from the Delaware river and the balance from the Schuylkill.

Twenty per cent. was pumped by water power-a decrease of five per cent.

The increase in the quantity pumped by steam, including the high service, was eleven per cent.

The cost of pumping has been slightly reduced, notwithstanding the fact that the wages account of the employees of the several pumping stations was increased $\$ 5,362.85$, and the item of repairs was $\$ 8,780.68$ greater than during the preceding year.

During 1890 the cost of pumping one million gallons 100 feet high, for coal alone, was $\$ 1.92$. During 1891 the cost was $\$ 1.63$, making a total saving of $\$ 23,811.61$; or in other words, 82,109 millions of gallons were pumped 100 feet high during 1891 for $\$ 134,942.91$, against $\mathbf{7 2 , 1 3 8}$ millions of gallons during 1890 for $\$ 138,429.25$.

This reduction in cost was due to the substitution of washed buckwheat anthracite coal for pea coal, the average price of the former being $\$ 1.80 \frac{1}{2}$ per ton, and the latter $\$ 2.05$ per ton. During 1892 there will be a still greater reduction, owing to a much lower price bid for buck wheat coal.

This substitution was made without any expense for new grate bars, or for any other change, the smaller coal being as readily burned on the old grates as the larger size.

The following table shows the quantity of water pumped at Fairmount since 1880 :

year.	Gallone per 100 fott.	Repara	
$1881 .$.	$7,78,829,889$	82,1972	${ }^{32} 21$
1882.	9,377,68,35	2,7396	174
188.	9,57, 968,720	2,99262	145
188.	8,575, $, 10,584$	2,7593	135
1885	6,897,36,991	7,939 91	238
1886.	7,282,53,796	9,98887	228
1887.	10,10,78, ${ }^{\text {a }}$, 6	5,828 88	118
1888.	11,2,1,112,108	6,988 00	14
1889	11,413,86,659	4,800 4	12
$1880 . .$.	12,882, 28,1 ,30	4,900 0	91
$189 . . .$.	11,880,	∞	114

The increase in the cost of pumping by water power was due to the low water in the river. The total number of hours the wheels were stopped on this account was 8,510 , or 4,890 more than during the previous year.

The following table shows the gallons of water pumped by each wheel, the hours stopped, and the cause:

Fairmount Pumping Station, 1891.

$\begin{aligned} & \dot{\square} \\ & \frac{\dot{8}}{4} \\ & \text { a } \end{aligned}$	Total pumpage.						
1	840,688,898	8.479	35	65	15	12	154
3	2,270,023,980	8.490	34	79	15	8	189
4	2,244,274,245	8.548	80	128	87	167
5	1,962,256,286	7.702	48	893	89	2	81
7	1,838,753,818	5.740	52	2,478	40	15	40
8	1,447,169,730	6.180	58	2,313	40	32	137
9	1,277,657,875	5.550	56	2,559	18	32	545
	11,380,824,730	50.489	858	8,510	204	96	1,668

Consumption.

The total number of gallons consumed was $54,678,916,408$, a daily average of $149,805,250$. which is a per capita consumption of 140 gallons on an estimated population of $1,071,672$. This is an increase of nine gallons over the year, and forty gallons since 1888.

Some experiments have been made for the purpose of accounting for this increase-one in the centre of the City and two in manufacturing districts.

The first selected was the square between Broad and Thirteenth and Walnut and Spruce streets, which was isolated by" closing the necessary stops except at Juniper and Walnut streets, where the water passed through a six-inch meter.

A house to house inspection was first made for leaks. Three spigots were found wasting some water, and they were repaired. No other leaks could be detected. All of the houses were supplied with curb stops to shut off the water.

This district contained one hundred and thirty-one buildings, as follows:

Dwellings.. 104
Dwellings and stores..................... 3
Dwellings and stables.. 2
Stables... 12
Stores .. 3
Historical Society..................... 1
Library .. 1
College ... 1
Theatres 2
School ... 1
Club house... 1
Total... 131
Population.. 794
There were no manufacturing establishments, and the appliances for the use of water were as follows:

Hydrants 98
Wash paves... 71
Spigots, kitchen... 384
Spigots, bath tubs 244
Spigots, wash tubs 12
Spigots, wash stands. 255
Spigots, in cellars. 38
Spigots, in bar room. 3
Spigots, fire hose 19
Spigots; pantry 74
Water closets, with handle 41
Water closets, in yard. 16
Water closets, flush tank 134
Urinals. 13
Urinals, stalls. 5
Motor. 1
Beer pump 1
Ice cooler. 1
Steam boilers 2The water rents amount to $\$ 2,335.55$.Readings of the meter made every hour from November4th to 18 th, inclusive, showed an average daily consumptionof 89,760 gallons, equal to 113 per capita.Forty-one and four-tenths per cent. were used between sixo'clock P. M. and six A. M., and forty-eight and six-tenthsper cent. between six A. M. and six P. M., or

It was at first supposed that on account of the large amount of water passing through the meter between $12 \mathrm{P} . \mathrm{M}$. and 6 A. M. there were some leaky pipes, but none could be discovered.

Three urinals and five urinal stalls were found to be constantly running. It was not practicable to measure the water used by them, but by metering similar appliances, under similar conditions, an approximation was made. It is certain that they use not less than 43,450 gallons daily, one-fourth of
which is within 3,926 gallons of the total used beween 12 P. M. and 6 A. M.

In addtion to the above there were eight syphon urinals running constantly, but the amount of water they use has not yet been ascertained.
Average consumption........ 794 people, 24 hours, 89,760 gallons.
Three urinals...........................450 gallons.
Five stalls..................

This amount represents a consumption per capita of 58 gallons exclusive of the water' used by the urinals. By the constant running of these appliances nearly fifty per cent. of the water used passes through them.

By experiment it was found that the least amount of water that can be used to effectually wash urinals with the water running constantly is 1,150 gallons daily, or 419,750 gallons yearly, which at meter rates amounts to $\$ 33 . j 8$. The rent now charged is $\$ 2.00$.

Running at full capacity as some do, they would each use annually about $\$ 179.85$ worth of water at meter rates.

The examination of this locality will be continued with the assistance of a Deacon waste water meter.

Similar examinations should be made over the entire City. Much waste could be prevented, but this experiment shows that the largest proportion of the waste is legalized through appliances that of necessity use a large amount of water. The only check that can be put upon them is a meter, which will either make payment for the water used, or compel the shutting off of the water when the use of the appliance is not required.

The second experiment was made by placing meters on the mains supplying a large manufacturing establishment in the Twenty-eighth Ward. During the first eight days the water passed through the meters at the rate of 600,000 gallons per
day, or $219,000,000$ per annum. The water was delivered under 140 pounds pressure from the Roxborough reservoir.

The water pumped at Roxborough supplies Manayunk, Falls Village, Chestnut Hill, Germantown and Tioga, the total gallons for the entire year being $3,745,192,134$.

It will thus be seen that one-seventeenth of all of the water pumped at this station was used by this one establishment, which should pay by meter rate the sum of $\$ 17,520.00$ annually. The amount charged by assessment is but $\$ 1,792.00$.

The third experiment was made in a manufacturing district in the Thirty-first Ward, which contained:

200 Dwelling houses.
13 Manufacturing establishments.
7 Dye houses.
5 Stables.
2 Stores.
1 Church.
1 Slaughter house.
2 Offices.
1 Saloon.
The resident population was 849 , and the transient population employed in the mills and dye houses numbered 1,733 .

The water consumed amounted to $1,292,544$ gallons daily, or 1,522 gallons per capita of resident population. These investigations were only preliminary and to obtain experimentally some idea of the best manner of conducting further examinations throughout the entire City for the purpose of stopping waste and reducing the per capita consumption, and for increasing the revenue of the City from water rents.

Rain-fall.

Eight years of continuous records of the rain-fall on the Perkiomen, Neshaminy and Tohickon streams have been completed.

The total for the eastern counties of Pennsylvania was 50.07 inches, being 1.50 inches above the average for the past nine years. For report in detail, see Appendix F.

Flow of the Schuylkill.

By adding together the daily flow to waste over the flash boards on Fairmount dam, we have a total of 64 feet 10 inches for the year, which is 23 feet 7 inches less than during the previous year, and 31 feet less than during 1889.

Only 36 per cent. of the rain-fall in the Schuylkill valley can be accounted for at Fairmount, which gives an average daily flow of $1,512,400,000$ gallons.

The greatest monthly flow was during January and the least in June.

The greatest daily flow was 38 inches on August 25th.

Qualty of the Water.

At times the water has been very objectionable in appearance and the blackish water following a storm remained in the river longer than usual. The quantity of stored water was occasionally insufficient to last until the river became clear. Additional subsiding and storage basins are therefore a necessity.

Several analyses of the water were made by three experts in connection with a purifying plant temporarily placed at the Belmont station, and the following extracts from their reports show the condition of the river water.

Dr. Samuel G. Dixon on two occasions collected water at Belmont and submitted each sample to sixteen bacteriological analyses with the following results :

In 1 c. c. of water 1,678 points of micro-organic life were found.
In 1 c. o. of water 813 points of micro-organic life were found.
Extracts from Dr. Dixon's report: "The number of bacteria was astonishingly small and indicated from a numerical bacteriological point a fairly potable water." "At this stage of the analysis I am inclined to believe that all of the colonies represent non-pathogenic or non-disease producing bacteria."

The following table is taken from a report by Drs. Henry Leffman and William Beam :

Parts in 100,000.

1891.	Apprarancr			Nitrites.	告	
July 11...	Turbld......................	0.023	0.054	None	0.4	
Aug. 19...		0.082	0.102	Trace	0.57	4.10
Aug. 22...	Tarbld....................	0.04	0.08	Trace.		
Aug. $26 . .$.	Very turbid................	0.08	0.16	Traceono.o....es	2.....	4.45
Sept. 17...	Very turbid and yellow	0.022	0.068	Marked amount.		205
Sept. $28 . .$.	84ightry tarbid............	0.024	0.066	Trace.		1.700
Oot. 12...	Tarbid...	0.02	0.062	Treob.		

The following is from a report of Dr. N. Wiley Thomas, Professor of Chemistry, at Girard College:

Parts per 1,000,000.

toI
N. Wiley Thomas.

Pumping Stations.

A new boiler house and stack were built at the Spring Garden station. Five new boilers were placed therein and fired on Novemher 5th, after which five old boilers in an adjoining room were removed and preparations made for the reception of a new twenty million gallon engine, under contract.

The old boilers could not be dispensed with until the new ones were serviceable, and this has caused some delay in beginning the engine foundations. With the new engine the capacity of this station will be one hundred and sixteen millions $(116,000,000)$ of gallons.

At Mount Airy station a small boiler house was added, in which a new steel boiler was placed. A Knowles pump of one million gallons capacity, taken from the Roxborough high service station, was put in, both the engine and boiler being in reserve in case of accident to the original plant.

At the Frankford station a new pump was put on the Corliss engine in place of one broken, and the engine is being strengthened in other parts.

The remaining pumping stations have been kept in good order, the usual repairs to the engines and buildings having been made when required.

Reservoirs.

On January 26th a slide occurred on the inside slope of one section of the East Park reservoir. The bank was repaired and strengthened by means of a concrete wall.

At the Lehigh avenue basin the top of the banks were paved with asphalt, a new fence placed around on the edge of the inner slope, and the driveway paved with slag blocks laid between granite curbing.

At the Corinthian avenue basin a new fence was placed around the top of the bank, and the footway up the slopes paved with slag blocks.

The work on the New Roxborough reservoir has progressed satisfactorily, and the banks are about completed with theexception of the clay lining. The contract for completing - the work has been awarded to Mr. John B. Reilly, the present contractor for the excavation, etc.

For report in detail see Appendix C.

Distribution.

The total feet of pipe laid during the year were two hundred and twenty-one thousand three hundred and thirty-six $(221,336)$, or more than forty-one (41) miles, making a total in use of over one thousand and one $(1,001)$ miles.

Six hundred and thirty-one (631) fire hydrants have been set in new locations ; two hundred and seventy-five (275) have been removed, adding three hundred and fifty-six (356) to the number in use, which is now eight thousand one hundred and five $(8,105)$.

A thirty (30) inch supply main was laid in Bainbridge street, between Broad and Front streets; a sixteen (16) inch supply main in Snyder avenue, from Moyamensing avenue to west of Fifth street; a thirty-six (36) inch supply main in. Fifty-second street, from Walnut street to Baltimore avenue, and a thirty (30) inch from Baltimore avenue to Woodland avenue ; a twenty (20) inch supply main in Haverford avenue, from Thirty-fifth street to Lancaster avenue; and in Fortieth street, from Lancaster avenue to Haverford avenue.

A forty-eight (48) inch supply main was laid from Twentyfifth and Spring Garden streets to Thirty-third and Master streets; a thirty-six (36) inch supply main was laid from Twenty-seventh and Thompson streets to Twenty-ninth and York streets; a twenty (20) inch supply main from Twentyseventh and Montgomery avenue to Broad and Norris streets; a twenty (20) inch supply main in Wissahickon avenue from Allen's lane to Rittenhouse street, and a twelve (12) inch main in the latter street to Manheim street.

In Rittenhouse street a sixteen (16) inch main was laid from Wissahickon avenue to Pulaski avenue.

All of this work was contracted for except the laying of the pipes.

The laying of these mains has greatly improved the distribution in parts of the City which before received but a short supply, particularly in West Philadelphia and Germantown.

The Cost of Labor for laying the above Supply Mains, not including the 16-inch Main laid in the First District, 88 shown in the following table.

[^1]Pipe Inspection.
Water pipes and special pipe castings were made during the year at the following foundries:

> Gloucester Iron Works, Gloucester, New Jersey. Camden Iron Works, Camden, New Jersey. Donaldson Iron Co., Emaus, Pennsylvania. Mellert Foundry and Machine Co., Reading, Pennsylvania.

The inspection of this work was accomplished with one Chief Inspector and two assistants.

The following table shows the extent and result of the work :

Pipes and Specials.	Inspected.	Rejecte..	Total A ccepted.
3-inch plpes..................	352	52	800
4-inch pipes.................	327	27	800
Q-inch pipes.................	16,361	1861	15,000
8-inch pipes..................	584	84	500
10-Inch pipes..................	578	73	500
12-inch pipes.................	831	181	700
16-inch pipes..................	376	26	350
20-inch pipes..................	1,733	83	1,650
80-inch pipes..................	1,016	$116{ }^{\circ}$	900
36-inch pipes.................	985	85	850
48-inch pipes..................	896	46	850
Small specials................	4,985	203	4,782
Large specials...............	516	38	483
Total......................	29,485	2,320	27,165

The pipes were delivered, lined upon the streets ready for laying. The price varied from 1.19 to 1.373 cents per pound. The ircon used stood a tensile strain of 25,000 pounds. About eight per cent. of the castings were rejected for various reasons.

Meters.

The total number of meters in use on December 31st was six hundred and ninety-seven.

The use of the meters tends to the checking of waste and they equalize the charges for the use of water. Every consumer pays the same rate, while by assessment it is possible for one party to pay much more and another very much less in proportion to the water used.

The charge by meter, although about as low as in other large cities, can be reduced one-half and yet pay a profit to the city.

All manufacturing establishments should be supplied at as low a rate as possible for manufacturing purposes.

For report on distribution, in detail, see Appendix D.

Construction and Repair Shops.

The principal work done at the shop from the year 1879 to 1891, inclusive, is shown in the following table:

Year.	Fire Hydranta.	Stop Valvee.	Frames and Covers.	Ferrules.
1879	276	198	60	715
1880	814	149	212	3,649
1881	435	237	872	3,085
1882	596	336	596	3,596
1883	729	328	423	4,799
$1884 . ~$	188	367	588	4,966
1885	451	667	658	7,155
1886	626	953	927	8,480
1887	606	549	466	8,041
1888	627	701	1,125	10,005
1889	969	844	729	;11,747
1890	759	953	800	11,250
1841	754	1,218	2,020	2,251

The principal advantage of this shop is in the facilities which it gives for repairs, especially to the machinery at the pumping stations, the work being done quickly and with much less expense than if taken to a private shop.

$$
\begin{aligned}
& \text { The repairs to machinery have amounted to. } \\
& \text { \$4,695 } 75 \\
& \text { to boilers } \\
& 61020 \\
& \text { " to boilers...................... } \\
& 57595 \\
& \text { Total } \\
& 5,88190
\end{aligned}
$$

For the work in detail see Appendix E.

Hydrographic Work.

The stream-flow and rainfall observations have been continued during the year, completing eight years' continuous records.

The tables showing the results and some interesting observations on rain-fall and rain gauges will be found in Appendir F.

The work of the Draughting-room is detailed in Appendix G.

Permits and Inspection.

The total number of permits issued was 16,090 , as follows :

For water appliances, First Purveyor's District................ 1,677					
" " "	Second			1,836
" " "	Third	"	"	5,309
" " "	Fourth	"	"		5,234
Building permits...					740
Shut-off and repair orders ..					1,105
Special permits					189
Tota					16,090

The building permits do not represent the number of buildings orected, as it frequently happens that a large number of dwellings is represented by one permit.

The inspectors were kept busy during the year, and the following table will give some idea of the character and extent of their duties. Their discoveries of illegal uses of water have amounted to more than their salaries :
R

Summary of the work done by Inspector's Department during the year 1891.

Ward.	Permits.	Insp'ct'ns.	Declines.	Dibcoveriks.		$\begin{aligned} & \text { Pipe } \\ & \text { bills } \end{aligned}$ served.
				Number.	Amount.	
First	1,406	81	47	109	\$915 00	170
Second...	85	54	41	67	40100	17
Third	6	38	20	80	51500	
Fourth	68	48	29	91	56800	
Finh......................	104	21	35	28	53500	
Sixth.....................	110	63	28	44	57100	
Seventh...................	138	17	23	31	48400	
Eighth	90	81	9	37	64200	9
Ninth	108	92	24	34	83400	24
Tenth	93	65	25	23	6.600	
Eleventh	74	180	25	82	12800	
Twelft.......	77	95	15	25	9500	9
Thirteenth..............	109	108	$\cdot 20$	16	.15450	
Fourteenth..............	144	65	83	29	17900	
Fifteenth......	267	85	52	59	58900	
Sisteenth	71	112	26	35	14000	
Seventeenth.............	85	30	21	30	20500	
Eighteenth..............	140	40	88	25	20600	15
Nineteenth..............	40	85	78	109	38600	6
Twentieth................	499	126	70	36	46400	
Twenty-irst.............	334	889	40	324	1,02400	125
Twenty-second	799	74	46	92	1,029 00	381
Twenty-third............	254	111	15	74	1,523 00	141
Twenty-fourth..........	1,214	188	48	173	2,086 00	131
Twenty-ifth	678	281	41	84	1,271 00	142
Twenty-sixth...........	1,662	156	48	467	3,840 00	124
Twenty-seventh	459	102	21	52	65000	184
Twenty-eighth...	2,950	96	74	255	2,558 50	562
Twenty-ninth.....	29	95	80	299	1,960 00	82
Thirtieth...........	192	82	32	84	89500	4
Thirty-first..............	261	64	45	32	60400	28
Thirty-second	827	23	32	75	1,01300	14
Thirty-third.............	1,668	108	32	144	76400	255
Thirty-fourth............	826	112	26	78	53000	138
Thirty-inh..............						
Total................	1,5848	8,707	1,284	8,173	828,550 00	2,570

[^2] Department.

Future Water Supply.

The continuation of the present arrangement of pumping from the Schuylkill and Delaware rivers will necessitate the adoption of some method for the improvement of the water, such as filtration, purification by some reliable process, or the construction of large storage reservoirs.

Unless the minimum flow of the Schuylkill can be increased by the construction of storage reservoirs on its tributaries, the city must in time obtain water from some other source; and if dams be built for this purpose it may be more desirable to conduct the water to the city by gravity than to permit it to flow down the river to be pumped by steam machinery into the reservoirs. Steam pumping is expensive, and the cost will increase yearly as the consumption increases.

In order to obtain a better quality of water it has been suggested that an aqueduct be constructed from the Norristown dam, by which water may be brought to the city at a somewhat higher elevation than Fairmount dam. This will decrease the cost of pumping to some extent, and no doubt for some time the water will be better than we now get, being free from the pollution entering the river below Norristown. After a rain the river at that point will be muddy and black, and a similar method of improvement, as now required, must be provided. For an explanation of the proposed plan and cost see Appendix I.

As before stated, the necessity for increasing the flow of the river during the summer by means of storage reservoirs on its tributaries, or by the use of the present navigation dams, suggests another source of future supply which has been advocated by engineers and experts since 1865.

The Perkiomen and Tohickon gravity scheme referred to may be briefly described as follows: A dam can be located in the Tohickon water shed, just below the junction of the Tohickon and Haycock creeks, of sufficient capacity to store the flow necessary to give a daily average supply of $71,000,000$ gallons; its height to be 110 feet, extreme length 1,825 feet,
and cost $\$ 1,562,341$. From this dam a short aqueduct will convey the water into another dam on the northeast branch of Perkiomen Creek. The length of this aqueduct will be two-and-one-half miles, its diameter ten feet, slope one in six thousand, and with a daily capacity of $120,000,000$ gallons, which will be sufficient not only for the Tohickon supply, but also for the available water shed on the north.

The upper dam on the northeast branch of the Perkiomen is to be located at Perkasie. It is to be fifty feet high, 2,240 feet long. and will cost about $\$ 540,000$.

Another dam is to be located on the same branch at the Bucks and Montgomery County line, to be forty-five feet high, 1,200 feet long, and to cost about $\$ 365,000$. These two dama will be sufficient to give a daily flow of $33,000,000$ gallons from the northeast branch.

The main dam on the Perkiomen is to be located at Green lane. It will be ninety-five feet high, six hundred and thirtyfour feet long, and cost about $\$ 1,118,295$. An aqueduct of sufficient size and six-and-one-half miles long will connect this dam with the main aqueduct, and also tap both the east Swamp and Rich Valley Creeks above Sumneytown, thus collecting all the available flow from the Upper Perkiomen, and delivering it to the main aqueduct at the northeast branch.

This aqueduct is of sufficient capacity to carry also the flow from the Macoby creek if it be deemed advisable at any time to utilize it.

One dam is planned on the Rich Valley creek near Sumneytown, its height to be eighty-five feet, length six hundred and sixteen, and cost $\$ 465,000$.

The lower dam on the E. Swamp creek, located just above Sumneytown, has a height of seventy-five (75) feet, extreme length nine hundred and fifty (950) feet, and will cost $\$ 825,000$.

The upper dam is located near Millville. It is to be fifty (50) feet high, eight hundred (800) feet long, and cost $\$ 855,321$.

A number of small dams are located in the Upper Perkiomen watershed, in order to obtain sufficient storage capacity to utilize the entire flow of the stream above Green lane, which will be $65,000,000$ gallons daily, and adding the flow of the E. Swamp and Rich Valley creeks, 105,000,000 gallons, from the Perkiomen valley above the N. E. branch. The total area of these watersheds is 227.2 square miles, and the water-supplying capacity $209,000,000$ gallons daily.

The area of the land flooded by the dams will be about ten thousand $(10,000)$ acres. The total capacity of these storage reservoirs is $8,527,185,530$ cubic feet, or $63,783,275,764$ gallons, and the total cost $\$ 7,839,578$, making the average cost per million gallons stored, $\$ 122.91$.

The main aqueduct will extend from the lower dam on the N. E. branch to the proposed reservoir on Queen lane, in the Twenty-eighth Ward. It will be twenty-four and one-half ($24 \frac{1}{2}$) miles long, fourteen (1'4) feet in diameter, a slope of one (1) in six thousand $(6,000)$ and a daily capacity of $305,000,000$ gallons. It extends in a straight line from the place of beginning to the northern city limits on the Upper Wissahickon creek, partly in tunnel and partly in open cut. From the city limits it follows the right bank of the Wissahickon, almost in a straight line to the proposed reservoir, and crosses the Wissahickon just below Ritttenhouse street. This alignment brings the aqueduct within three quarters of a mile of the New Roxborough reservoir.

The total length of the aqueduct frow Green lane to the proposed Queen lane reservoir is thirty-one (31) miles. and the elevations along its line are as follows:

This aqueduct, including the Tohickon branch, is but one mile longer than the low-service aqueduct planned in 1885 , and delivers the water at an elevation of 234 feet C. D., instead of at 175 feet C. D., as then proposed.

The total estimated cost of this scheme, including aqueducts, storage reservoirs, etc., is as follows :

Storage reservoirs...	\$7,839,518 00
Tohickon, N. E. Branch aqueduct.....................	600,000 00
Green lane, N. E. Branch..	1,500,000 00
N. E. Branch, Philadelphia	10,000,000 00
Total	\$19,939,518 00

The above scheme is capable of being economically extended, to furnish a daily supply of $276,000,000$ gallons by utilizing portions of the Upper Neshaminy, Upper Skippack, Deep creek and Macoby watersheds. The main aqueduct is planned to carry the flow from these additional and other sources, and its estimated cost will not be increased by the extension, the extra cost being for other storage reservoirs and short branch aqueducts, amounting to $\$ 2,837,151$.

Nine years' observations of the rainfall and streamflow of the Perkiomen, Tohickon and Neshaminy creeks furnish the data from which these estimates of the available quantities of water were made.

Available Storage Reservoirs．

Water shed．	Location．						Capacity in gallons．	Capacity in cubic feet．		Total cost．	
Tohickon．．．．	Tohickon creek，below Haycock run．．．．．．．．．	2，382	8.5	410	110	1，825	20，132，393，072	2，691，496，400	73.1	\＄1，562，341 00	\＄77 60
Area 73.1 sq．miles； available flow－ 71，000，000 gallons per day．											
Lower Perkiomen．．．	N．E．Branch creek at County line．．．．．．．．．．．	502	5.0	300	45	1，200	2，227，643，708	297，813，330	38.4	\＄365，000 00	\＄163 85
Area， 38.4 sq．miles ； available flow－ $33,000,000$ gallons per day．	N．E．Branch creek at Perkasie．．．．．．．．．．．．．．．．．	1，096	4.8	350	50	2，240	6，486，656，000	867，200，000	17.2	540，000 00	8325
Upper Perkiomen．．．	Rich Valley creek，near Sumneytown ．．．．．．．．	90	1.0	330	85	616	1，144，140，800	152，960，000	9.0	\＄465，013 00	
Area， 115.7 sq．miles； available flow－	E．Swamp creek，near Sumneytown．．．．．．．．．．． E．Swamp creek，near Millville．．．．．．．．．．．．．	175 1,648	2.2 4.5	310 450	70 50	950 800	$1,446,117,376$ $8,293,584,640$	$193,331,200$ $1,108,768,000$	35.4 31.9	825,000 855,32100	57049 10313
available flow－ $105,000,000$ gallons	E．Swamp creek，near Millville．．．．．．．．．．．．．．．．．．．	1,648 1,707	4.5	450 300	50 95	800	$8,293,584,640$ $10248,786,328$	$1,108,768,000$ $1,370,158,600$	31.9 71.3	$\begin{array}{r}855,32100 \\ 1,118,295 \\ \hline 00\end{array}$	10313 10911
per day．	W．Branch of Perkiomen at County line．．．．．	1，095	2.9	435	72	1，103	6，875，286，880	－919，156，000	19.6	817，173 00	11886
	W．Branch of Perkiomen at Dale Forge．．．．．	226	1.5	600	78	384	1，858，319，040	248，448，000	12.2	291，591 00	15690
	W．Branch of Perkiomen at Mench＇s Mill．，	281	1.5	765	38	270	1，019，783，440	136，328，000	4.5	187，188 00	18356
	Perkiomen creek at Palm station．．．．．．．．．．．．．．	472	2.2	355	40	668	2，029，817，680	271，366，000	24，2	418，935 00	20639
	Perkiomen creek at Treichlersville．．．．．．．．．．．．	118	0.9	520	66	717	933，504，000	124，800，000	5.2	209，354 00	22426
	W．Branch of Hossensack creek．．．．．．．．．．．．．．．．	105	0.6	500	39	376	603，785，600	$80,720,000$	3.6	9329000	15451
	Indian creek above Powder valley	106	0.8	725	45	725	483，507，200	64，640，000	2.3	91，017 00	18825

Total water shed area， 227.2 sq．miles．
－Total available flow，209，000．0＇0 gallons per day． Total storage capacity，$\left\{\begin{array}{l}\text { cubic feet，} 8,527,185.531 \\ \text { gallons，} 63,783,276,764 .\end{array}\right.$

Total cost of reservoirs，\＄7，839，518．00． A verage cost per million gallons stored，\＄122，91．

The estimates for the dams were taken, as far as possible, from the Reports of 1885 and 1886.

By this proposition the expense of pumping will be limited to the supply for Chestnut Hill, Roxborough and Germantown.

The cost of pumping $276,000,000$ gallons as at present from the Schuylkill and Delaware rivers will be about $\$ 400,000$ annually, or a four per cent. interest on $\$ 10,000,000$.

Mr. Joseph Wharton, of this City, submitted a plan for supplying the City with water from streams in southern New Jersey. He states that "The gathering grounds for his " system lie in the great pine forests of southern New Jersey. "The population on the Mullica watershed is extremely small" less than on almost any other in this part of the country. "On the part which it is proposed to draw from, it ranges " from six to nineteen per square mile. The soil is gravel " and sand, and water percolates through it so readily that "practically all of the rainfall sinks into the earth, whence it " is fed out evenly and uniformly to the streams. In this "way it undergoes complete filtration, and there is no "carrying of effete organic matter into the streams, such as " always happens in case of streams having large surface flows "during wet seasons. In this respect there is a marked simi"larity to those gravelly watersheds of Long Island, which "have so long furnished an abundant and pure supply to the "City of Brooklyn."
"The total area of the watershed of the branches of the "Mullica river which are to be drawn upon, is 288.7 square "miles, yielding a daily supply of $205,800,000$ gallons."
"A series of storage reservoirs are to be constructed on the " several streams, connected by a system of canals through " the forest, all delivering into a large reservoir on the Batsto "river east of Atsion. The water is pumped from this reser" voir into one on Λ tsion river, from which it will be led by a "canal to a large reservoir on the head waters of Cooper's

116
"creek, and delivered from thence to Philadelphia through "several lines of 48 -ineh steel pipes carried across the Dela"ware under the bed of the river. The water will then be " pumped into the distributing mains or reservoirs."
"This supply can be increased to 238.8 , or to 400 millions " of gallons daily."

It is unfortuuate that such favorable conditions as these cannot be found in Pennsylvania.

For a detailed report on this plan, see Appendix H.
Respectfully,
JOHN L. OGDEN, Chiaf Engineer.

APPENDIX A.

Receipts through the Office of Bureau of Water, Department of Public Works, for the year 1891.

January	Wm. Massey Co...................	Supply connection.	
	W. G. Warden	Supply connection..............	6850
	Henry Snyder	Rent, Fairmount.................	50000
	J. C. Hancock \& Co...........	Cutting ice	25000
	Wm. Cartar..	Stone	1100
	Wm. Donahue.	Stone	600
	P. \& R. Railroad Co.............	Repairing supply $00 \mathrm{n}$. .	615
	Overdrawn warrants..		4818
February	Warrants drawn in o		7825
	Daniel McMahon..................	Redriving ferrule	500
	Daniel McMahon.................	Repairing main.................	1113
	Bryan, Fox \& Sons...............	Removing stop box	620
March	Overdrawn warrants............		55
	H. M. Harris.......................	Rent, farm No. 1................	10000
	Wm. Root...	Rent, farm No. 4...............	10250
	John W. Harris....................	Rent, farm No. 2...............	10000
	N. Liberty Gas Works..........	Fire connection.................	4478
	James Deehan.	Relaying pipe...............	6310
	James Deehan....................	Relaying pipe.......*...........	7035
	Sullivan Bros	Watching pipe...................	2100
	John Nighlinger.................	Rent, farm No. 3...............	7625
	Overdrawn warrant..............		65
	Bergdoll Brewing Co...........	Fire hydrant.....................	1636
	Peoples' Pass'g Railway Co...	Moving stop......................	1954
	Peoples' Pass'g Railway Co...	Moving stop..................	1447
April	Overdrawn warrant.............		504
	Overdrawn warrant		288
	Quaker City Croquet Club.....	Rent!	1000
	Weat Jersey Ferry Co..........	Removing fire hydrants, etc.	4629
	Bergner \& Engle Brew'g Co..	Supply connection	7838

118

Receipts through the Office of Bureau of Water, Department of Public Works, for the year 1891-Continued.

May	2.....	W. Philadelphia Market Co...'	Supply connection..............	82637
	7....	Clarendon Oil Co.	Old oil barrels..	1440
	9....	Delaware Ave. Market Co.....	Repairing fire hydrant.........	591
	9.....	Overdrawn warrants.		100
	20.....	Peoples \& Bros.....................'	For breaking pipe................	15779
	22.....	Howard R. Yocum	Stone..	1175
	27.. .-	D. McMahon	Repairing water main..........	8253
	28.....	P. \& R. Railroad Co..	Repairing standpipe...........	203
June	2.....	B. Franz \& Son	Old fencing.	2000
	19.....	Geo. W. Rush	Relaying pipe.....................	2073
July	6.....	F. G. Belleville	Repairing stop	620
		Philadelphia Traction Co.....	Moving stop.	1881
	9.	D.	Repairing main.	1925
	18.	Electric Light Co	Supply connection............	5701
	15.....	A. Purves \& Son.................. ${ }^{\text {! }}$	Old boilers	25500
	21....	Girard House	Supply connection	1553
	21.....	Henry Snyder	Rent, Fairmount	50000
	21....	John Bonhage	Repairing leak....................	827
	23.....	P. \& R. Railroad Co.	Repairing standpipe............	793
	23.....	Geo. W. Shultz \& Co	Pipe aqueduct bridge	1,560 00
	24.....	A. Purres \& Son..................	Lot old iron...................	17042
	25.....	P. W. \& B. Railroad Co	Supply connection..............	841
	27...	Tracy Worsted Mill Co.........	Fire connec	5540
August	5....	Philadelphia Traction Co.....	Supply connection	722
	12....	S. W. Market Co.	Fire Hydrant...	5987
	13.....	P. \& R. Railroad	Fire connection	10891
	14.....	U.S. Arsenal (Schuylkill).....	Supply connection.	9428
	18.....	Clarendou Oil Co.................	Old ofl barrels	2232
	20.....	Cramp, E. \& S. B. Co.............	Fire hydrant......................	3810
	21.....'	Henry Dawson....................	Stone..	2100
	24.....	P. \& R. Railroad Co.............	Repairing standpipe............	400
September 10....		H. M. Harrin.	Rent, farm No. 1................	10000
October	5....	Pemberton \& Co..................	Laying water pipe.............	12822
	19.	Philadelphia Traction Co......	Supply connection..............	1270
	19.....'	D. McMahon......................	Repairing leaz..................	768

Receipts through the Office of Bureau of Water, Department of Public Works, for the year 1891-Continued.

APPENDIX B.

REPORT OF CHIEF CLEKK.

Bureau of Water.

Philadelphia, January 29, 1892.

Mr. John L. Ogden,
Chief of Bureau of Water.

Sir :-I have the honor to submit herewith a detailed statement of the expenditures of this Bureau for the year 1891.

Respectfully,
J. T. HICKMAN, Chief Clerk.

121
Detailed Expenditures of the Bureau for 1891.

General Appropriation. $^{\text {a }}$	Amonnt appropria'd	Amount expended.	Amount merging.	$\underset{\text { not merging. }}{\text { Amount }}$
An Ordinance to make	81,880,683 48	6,000 00		
an appropriation to the				
Baread of Water, ap- proved Dec. 29, 1890...... \$1,261,603 00				
1839.......................... 352,080 48				
Increased by transfer.... $\quad 10,00000$				
Extre appropriations..... 257,000 00				
Net appropriation..........................				
Itam 1. Salariex.....				
$\begin{gathered}\text { Diminished by transfer } \\ \text { to Item } 7\end{gathered} \$ 1,50000$				
appropriation to Item.	$\left.\begin{array}{rl} \$ 182,803 & 00 \\ 6,000 & 00 \end{array} \right\rvert\,$			
For salary Chiet of Bureau..................				
Chief clerk	2,000 00			
Assistant clerk..............	1,080 1,000 000	2000 1,080 00		
Correspondence clerz........		'900 00		
Time clerk....................	900 6.50 100	90000		
Messenger......................		650$\mathbf{6 9 0}$3,92186		
Draughtsmen..................	6,5000 4,50000 4,500			
General superintendent.....	3,500 00	3,500 00		
Clerks to general superintendent.	$1,95000$	1,930 00		
Assistants to chief...........	1,40000 3,400 1200	1,40000 $\mathbf{3 , 2 0 0}$ $\mathbf{0}$ 100		
Pipe inspector and clerk...				
Search clerks	2,200 1,100 100	2,200 1,100 000		
Assistant clerks........	1,100 $\mathbf{3 , 5 0}$ $\mathbf{1} 500$	1,100 $\mathbf{3}, 615$ 00		
Chief inspector................		1,100 00		
Inspectors.....................	17,100 00	17,100 00		
Permit clerks.............	2,080 80	2,080 00		
Purveyors,,............		9,000 00		
Clerks to purveyors..........	4,000 4,320 00			
General foremen.........	6,573 00			
Foreman of repairs.........	8,900 00		-	
Superintendent of shop.....	1.50000	3,900 $\mathbf{1 , 5 0 0}$ $\mathbf{1 , 5 0}$		
Clerk to superintendent of shop.	$90000{ }^{\prime}$	1,500 900		
Watchmen, office, reservoirs and yards..	9,450 00	$\begin{array}{r}900 \\ \hline 900 \\ \hline 1565\end{array}$		
Storekeepers.....................	1,400 00	1,400 00		
Foreman, machinists........	1,50000	1,5001,0001,00		
". bricklayers.......	1,00000			
"] carpenters.........	1,000$\mathbf{9 0 0}$$\mathbf{0 0}$	1,000 1,000		
" stone-masons.....		1,010 885 800 800		
" painters..........	90000 90000	88500 90000		
". riggers.............				
" laborers.........	90000	900 810 810 00		
Janitor main office...........	67500	67500		
Lineman.......................	720960	72094393		
Telephone operators.........				
Electrician..................	9601,050$\mathbf{1 0 0 0}$$\mathbf{9 0 0}$	$\begin{array}{r} 943 \\ 1,050 \\ 900 \\ 900 \end{array}$		
General storekeeper.........				
Balaries at Pumping Stations.	10,500 00	10,467 02		
Fairmount engineers, oilers etc........				
Bpring Garden engineers, ollers, firemen, conl-passers, etc.	36,815 00	36,280 83		
Bolmont engineers, oilers, firemen,				
conl-paseers, etc...	11,250 00	11,218 25		
Boxborough engineers, ollers, firemen, coal-paseers, etc......................	10,870 00	10,790 36		

Detailed Expenditures of the Bureau for 1891.

Detailed Expenditures of the Bureav for 1891.

Detailed Expenditures of the Bureau for 1891.

General appropriation.	Amount appropria'd.	Amount expended.	Amount merging.	Amount not mergi'g.
Item 3-continued.				
Repairs to Boiler covering: spring Garden. \qquad 55122				
Engine, Frankford............................		1,159 91		
Electric plant 1 248 72				
Sand.. ${ }^{\text {a }}$. 410				
Sponge cloths.. 515150				
Tools .. 1,7500				
Transportation .. 1,41750				
Water meters................................ 90000				
Wages: Painters. \qquad $\$ 04200$				
Stonemasons........................ 1,90699				
Carpenters................... 5,035 93				
Brickiayers.....................Latorers.............8,4018,4016				
Machinists..................... 14,824 77 38,32764				
Totals........... 59,79857 2014				
Item 4. Maintenance and repairs to				
Increased by transfer from Item 2 \qquad $15,00000$				
Net appropriation to Item................. $\quad \mathbf{7 5 , 0 0 0} 00$				
Deficfency of 1890 : Incidentals ... 1559				
Bricks ..		1,439 46		
Cement ${ }^{\text {3,017 }}$, 29.				
Forage................................				
Granite curbing ${ }^{2} 40817{ }^{23}$				
Hardware ..				
Hire of float.. 10 (10				
Paints..................................... $. \mid ~ 1,191 ~ 95 ~$				
Plants... 17213				
Repairs to harnens.. 314 - 130				
$\begin{array}{lll}\text { Repairs to pavements.......... } & 361 & 10 \\ \text { Repairs to roofs................ } & 1,191 & 73\end{array}$				
$\begin{array}{lll}\text { Repairs to sidings............... } & 289 & 10 \\ \text { Repairs to wagons.......... } & 184 & 05\end{array}$				
		,273 78		
Sand..		28470		

Detailed Expenditures of the Bureau for 1891.

General Appropriation.	Amount appropria'd.	Amount expended.	Amount merging.	$\underset{\text { not mergifg. }}{\text { Amount }}$
Item 4-continued.				
Slag....................................		15768		-
Slag block paving, 2,0891/3 sq. yards at 8260		6,482 28		
Stop valves, 12 in .16 in ., 3 way, at $8: 2850$		34200		
Stone...............................		28125		
Towing				
Wages: Bricklayers $\$ 12960$				
Horse, cart and drivers... $\quad 1,46450$				
Stone masons................. 1,31750,				
Painters ${ }^{\text {3 }}$ 8655 50				
Helpers 5,295 14				
Carpenters..................... 8,213 47				
Laborers....................... 16,841 74		86,827 45		
Totals., .		874,708 24	\$29176	
Item 5. For repairs and improve ment of the distribution, including the purchase of material and cost of labor in connection therewith and expenses incident there-				
Increased by transfer from D.partment of Public				
Brase castings : 2,752 lbs. yellow brass at				
115/8 centa....................... 831992				
941 bs. red brass at $143 / 8$ c... 13527 2,073 lbs. lead coating at 4 c.. 8292				
\$538 11				
Cr. 2,980 lbs. brass trimmings at				
6 cents.............................. 8178808,850 lbe. brass scraps at $7 / 2$ c.. 288875				
Bricks ..				
Chandlery		20000		
Corporation cocks, $10941 / \mathrm{r}^{-1 \mathrm{l}}$ at 63 cts $\quad 68922$				
Horses...				
Horse shoeing... 2400				
Iron pipe: $300-4 \mathrm{in} .66,605 \mathrm{lbs}$ at 886988				

Detailed Expenditures of the Bureau for 1891.

Detailed Expenditures of the Bureau for 1891.

Detailed Expenditures of the Bureau for 1891.

Detailed Expenditures of the Bureau for 1891.

130

Detailed Expenditures of the Bureau for 1891.

131
Detailed Expenditures of the kureau for 1891.

RECAPITULATION.

APPENDIX C.

REPORT

OF THE

GENERAL SUPERINIENDENT

OF
WORK DONE DURING 1891 TO BUILDINGS, GROUNDS AND RESERVOIRS, AND BOILERS AND MACHINERY OF THE SEVERAL PUMPING STATIONS.

> Office of the General Superintrindent, Bureau of Water.

> Philadelphia, January, 1892.

John L. Oaden, Chief, Bureau of Water.
SIr:-The following is a report of the work performed under my direction during the year 1891:

There have been pumped $55,665,648,000$ gallons of water, an increase of $3,967,139,301$ gallons over the pumpage of the year 1890.

The maximum daily pumpage was $183,421,163$ gallons, an increase of $12,820,586$ gallons over the maximum daily pumpage of the preceding year.

The average daily pumpage was $152,508,624$ gallons, an increase of $10,868,875$ gallons over the average of 1890 .

There have been pumped from the East Park reservoir to the district supplied by direct pumpage $445,199,360$ gallons of water during the year.

At the Spring Garden station a new boiler house and stack were built. The excavations and foundations were made by this Bureau, and all other work by contract, from designs and specifications furnished by the Department under the direction of the Chief of the Bureau.

Five new boilers were put in, the foundations, flues and setting of which were done by the Bureau. The boilers were built by the Southwark Foundry and Machine Company, from designs and specifications furnished by this Bureau, and are of steel, of the corrugated furnace flue tubular type, 20^{\prime} long, $8^{\prime} 6^{\prime \prime}$ in diameter. They are designed to carry one hundred (100) pounds of steam, and have been tested to one hundred and fifty (150) pounds of water pressure, and found to be tight. They were first fired and put in operation November 5, and have been in constant use since that time.

The old tubular boilers were taken out, the stack and foundations taken down, and excavation is now being made for a $20,000,000$ gallon engine to be placed in the room made vacant by the removal of the boilers.

At the Mt. Airy station an addition was built to the engine and boiler house. A new steel boiler 1^{\prime} long, 6^{\prime} diameter, to carry 125 pounds of steam, designed by the Bureau, and built by Henry Warden \& Co., was put in.

The $1,000,000$ gallon "Knowles" pump was taken from Roxborough Auxiliary Works and put up in the new house, and connected to the pumping mains on the high duty service,

At the Roxborough station the old Cornish overhead beam engine was taken out and broken up.

At the Frankford station the north pump on the No. 2 engine was broken and a new one was put in place and started up in December. New pedestals are now being put in place on the same engine.

The work on the new Roxborough reservoir has progressed satisfactorily. The contractor began the excavation January 13 , and during the year has taken out 344,915 cubic yards of material. There still remain about 44,000 cubic yards to be moved. The walls on the property line, consisting of 1838 cubic yards of stone masonry, have been completed.

The brick masonry completed includes the foundations for the drains, outlet pipes and pass pipes through the division bank. The outside banks are up to the proper height, except at the opening left for taking out the waste material. The division bank has yet to be raised from the original surface, the average being 14 feet above the bottom of the reservoir.
A ten ton steam roller was used to puddle the banks. Clay from the immediate vicinity and from Spring Mill and Barren Hill, Montgomery County, was used for the puddle trenches and bank foundations. Most of the waste material has been deposited in the hollow at the N . W. corner of the reservoir property.
The Engineer Corps has been engaged in staking out various portions of the work, giving lines and grades for the excavation, measuring up the monthly estimates, and testing samples of the materials used.

At the East Park reservoir on lanuary 26th, 150 feet of the bank at the curve in the N. W. corner of the N. E. section caved in, carrying with it 60,000 bricks, and cutting into the bank fifteen feet. The clay was taken out and the bank strengthened by a concrete wall, and the clay, after being dried, was put back and thoroughly rammed, and the bricks relaid and grouted. The inclines at Diamond street and Columbia avenue were paved with slag blocks.

At the Wentz Farm reservoir the western half of the north bank, from the terrace to the bottom, was taken out and rebuilt.

At the Lehigh basin the roadway on the incline was paved with slag blocks. The top of the banks were graded and paved with asphalt, and a new fence built around the outside bank.

At the Corinthian avenue basin the slopes were graded, new curb put down, and paved with slag blocks, and a new fence built around the entire bank.

The machinery and boilers at the several stations have been kept in good working order, although the engines at all the works have been run above their capacity.

The buildings, grounds and reservoirs have been kept in good condition, and many improvements have been made.

Respectfully submitted,
FRANK L. HAND, General Superintendent. per day.
No. 10.- Worthington Duplex.Capacity, $15,000,000$ gallons

Total Capacity- $30,000,000 \mathrm{gal}$ lons per day.

NEW STPRING GARDEN STATION.
per day.

1891.	Running Time of each Engine in Hours.		Gallons Pumped by each Engine.		Total Pumpage of each Month. \qquad Gallons.	Average Pumpage per bay. Gallons.	Coal.			Oir.		Mean Water Pressure and Mean Suction Lift in Pounds per sq. in.			
			$\begin{aligned} & \text { 淢 } \\ & \text { 䫆 } \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{0 .} \\ & \frac{1}{60} \\ & \stackrel{a}{n} \end{aligned}$											
	No. 9.	No. 10.			No. 9.		No. 10.	Tons.		Lbs.	Qts.	Qts.	No. 9.		No. 10
January.....	640	663	386,264,572	898,774,447		785,039,019	25,323,839	1,398	1,300	20	540	77	70	70	374.2
February...	671	598	380,133,682	328,958,832	709,092,514	25,324,732	1,286	2,160	. 20	499	70	75	75	392.8	
March..	562	376	344,529,106	226,063,005	570,592,111	18,406,164	1,056	44	. 20	446	c8	74	74	384.7	
April....................	720	632	434,223,591	367,456,448	801,680,039	26,722,667	1,370	1,385	. 20	511	73	76	76	416.4	
May ...	743	579	475,525,566	362,126,190	887,651,756	27,021,024	1,399	761	. 20	583	74	75	75	426.8	
June...	720	691	477,585,398	483,416,577	981,001,975	31,033,299	1,516	910	. 20	534	72	73	78	437.1	
July.....................	743	720	518,586,211	508,161,635	1,026,697,846	38,119,285	1,534	1,530	. 20	608	78	68	68	476.8	
August	692	727	470,490,722	511,018,828	981,509,550	31,661,698	1,471	750	. 20	585	74	72	72	475.0	
September....	720	720	494,675,159	509,253,957	1,003,929,116	33,464,303	1,502	2,170	. 20	577	72	69	$\omega 9$	475.8	
October	744	742	509,191,860	509,854,527	1,019,046,387	32,872,464	1,559	899	. 20	688	84	72	72	465.3	
November.....	709	720	498,977,075	507,554,078	1,006,531,153	83,551,038	1,509	500	. 20	590	77	60	66	474.9	
December ..	694	741	481,401,015	510,056,408	991,457,423	31,982,497	1,493	1,540	. 20	556	79	65	65	472.0	
Totals and averages.	8,358	7,909	5,471,588,957	5,192,694,932	10,664,228,889	29,217,065	17,099		. 20	6,567	898	71	71	44.0	

6.000,002 gahionston Uuplox.-Capacity,
No. 8. Wiorthinkton
8000,000 gullons pay.

- NOILIVAS
PUMPING
HELMON'T

Digitied by Google

No. 1.-Worthington Duplex.-Capacity, 5,000,000 gallons per day.
No. 2.-Worthington Duplex.-Capacity, $5,000,000$ gallons per day.
No. 3.-Worthington Duplex.-Capacity $8,000,000$ gallons per day.

No. 2.-Worthington Duplex.Capacity, $5,000,000$ gallons per
Total Capacity, 12,500,000 gallons ROXBOROUGIl PUMPING STATION per day. day.
No. 3.-Worthington Duplex.Capacity, $7,500,000$ gallons per day.

1891. \|	Running time of each Engine, in hours.		Gallons pumped by eachEngine.		Total Pump- age each Month. Gallons.	Average Pumpage per Day. Gallons.	Coal.			Oil.		Mean Water Pressure and Mean Suction Lift in lbs. per Square inch.			
			$\begin{aligned} & \text { 淢 } \\ & \text { 要 } \end{aligned}$												
	No. 2.	No. 3.			No. 2.		No. 3.	Tons.		Lbe.	Qts.	Qts.	No. 2.		No. 3.
January\|	124	729	28,760,730	241,479,762		270,240,492	8,717,435	1,025	1,210	. 25	260	102	145	142	432.9
February\|	55	660	13,314,236	209,707,818	223,022,063	7,965,073	886	2,164	. 25	209	94	145	142	414.8 .	
March	166	744	37,242,580	234,810,308	272,052,888	8,775,899	1,043	2,176	. 25	266	104	145	142	484.2	
April	227	658	63,814,400	205,673,031	269,487,131	8,982,914	1,014	1,682	. 25	248	122	145	142	438.1	
May .	262	744	60,876,495	233,381,418	294,257,913	9,492,190	1,062	309	. 25	288	110	145	142	457.1	
June .	426	714	97,440,030	221,466,483	318,906,513	10,630,217	1,151	1,790	. 25	282	122	145	142	456.8	
July	497	742	111,927,395	229,697,625	341,625,020	11,020,161	1,199	1,845	. 25	334	122	145	142	469.8	
August	626	742	118,741,925	232,563,080	351,305,005	11,332,419	1,300	361	. 25	319	132	145	142	445.8	
September	631	718	141,455,745	218,572,861	860,028,606	12,000,953	1,326	1,832	. 25	341	120	145	142	447.7	
Octuber.	9	736	148,155,785	225,624,615	373,780,400	12,057,432	1,459	2,183	. 25	296	104	145	142	422.4	
November.........	471	716	108,692,350	225,180,324	333,872,674	11,129,089	1,343	2,085	. 25	238	98	145	14:	409.9	
December	439	742	99,754,250	236,858,889	386,613,139	10,858,488	1,346	283	. 25	195	102	145	142	412.3	
Totals daverages	3,833	8,644	1,030,175,920	2,715,016,214	3,745,192,134	10,260,800	14,162		. 25	3,276	1,332	145	142	436.3	

Total ('apacity, 785,000 gallons per day.

ROXBOROUGII AUXILIARY S'TATION. No. 2.-K nowles.-Capacity 250,000 gallons per day. No. 3.-Knowles.-Capacity 250,000 gallons per day.

No. 1.-Davidson Rotary-Capacity, $1,000,000$ gallons per day. Total Capacity, $3,000,000$ gallons
per day. MOUNT AIRY PUMPING STATION. $\begin{gathered}\text { No. 2..-Davidson Rotary-Capac- } \\ \text { ity, } 1,000,000 \text { gallons per day. }\end{gathered}$ per day. No. 2.-Davidson Rotary-Capa
ity, $1,000,000$ gallons per day. No. 3.-Knowles-Capacity, 1,000,000 gallons per day.

No. 2.-Knowles.-Capacity, 250,000 gallons per day.
No. 3.-Worthington Duplex.500,000 gallons per day.

Total Capacity-750,000 gallons per day.

Total Capacity, 20,000,000 gallons per day.

FRANKFORD PUMPING STATION.
No. 1.-Marine Compound Rotary.Capacity, $10,000,000$ gals per day. No. 2.-Corliss Compound Rotary.Capacity, $10,000,000$ gals. per day.

APPENDIX D.

REPORT

ON THE
OPERATIONS IN OONNEOTION WITH THE

DISTRIBUTION SYSTEM

DURING 1891.

Bureal of Water.
January 29, 1892.
Mr. John L. Ogden. Chief, Bureau of Water.
SIr :-During the past year there have been laid one hundred and fifty-seven thousand and sixty-one $(157,061)$ feet of service mains, fifty-two thousand three hundred and fifty-seven $(52,357)$ feet of supply mains, which, in addition to the connections and other new work, make a total of two hundred and twenty-one thousand three hundred and thirty-six $(221,336)$ feet, or forty-one (41) miles and four thousand eight hundred and fifty-six $(4,856)$ feet added to the distribution system, and a total of one thousand and one (1,001) miles and two thousand three hundred and eighty-nine $(2,389)$ feet now in use.

Thirty-two thousand and eighty-one $(32,081)$ feet of pipe have been laid to replace old and defective service mains, of which twenty-one thousand six hundred and seventy-five
$(21,675)$ feet were taken up, and eleven thousand seven hundred and fifty-eight $(11,758)$ feet were disconnected from the water supply and abandoned.

The total quantity used for relays and repairs was thirty-six thousand four hundred and ninety-seven $(36,497)$ feet, and the amount taken up, lowered and raised, twenty-seven thousand nine hundred and ninety-four $(27,994)$ feet, making the total amount for repairs sixty-four thousand four hundred and ninety-one $(64,491)$ feet.

The total quantity of pipe handled for all purposes was two hundred and eighty-five thousand eight hundred and twentyseven $(285,827)$ feet, weighing twenty-three million five hundred and forty-four thousand eight hundred and sixty-eight $(23,544,868)$ pounds.

Abandoned Pipes.

Eleven thousand seven hundred and fifty-eight $(11,758)$ feet of pipe have been cut off from the distribution and abandoned, as follows:

Fire Hydrante.

Six hundred and twenty-six (626) new and five (5) old style fire hydrants have been put in new locations. Two hundred and twenty-one (221) new, and twenty-three (23) old style have been substituted for defective ones of the old pattern, making a total of eight hundred and forty-seven (847) new, and twenty-eight (28) old-style hydrants put in during the year. There were removed two hundred and forty-two (242) old, and thirty-three (33) new style hydrants, making the total number added to the distribution during the year three hundred and fifty-six (356).

The total number of fire hydrants in use December 31, 1891, was eight thousand one hundred and five $(8,105)$, of which three thousand six hundred and ninety six $(3,696)$ are of the old pattern, and four thousand four hundred and nine $(4,409)$ of the new.

Drills.

Eight thousand one hundred and seventy-eight $(8,178)$ new attachments have been made, as follows:

The total number of shut-offs for repairs, etc., by permit, was one thousand and seventeen (1,017); and the number without permit, six hundred and sixty-three (663).

Supply Mains.

In the First District a thirty (30) inch supply main was laid in Bainbridge street, from Front to Broad street, and a sixteen (16) inch pipe in Snyder avenue, from Moyamensing avenue to west of Fifth street.

The former was laid and completed by June`8, and the latter June 30, 1891.

In the Second District the thirty-six (36) inch supply main in Fifty-second street was extended from Walnut street to Baltimore avenue, and a thirty (30) inch main was laid from Baltimore avenue to Woodland avenue.

In Haverford avenue a twenty (20) inch supply main was laid from Thirty-fifth street to Lancaster avenue, and in Fortieth street, from Lancaster avenue to Haverford avenue.

The Fifty-second street main was completed and put into service June 28, 1891, and the mains in Haverford avenue and in Fortieth street in May, 1891.

In the Fourth District a forty-eight (48) inch supply main was laid from Twenty-fifth and Spring Garden streets to the Stand-pipe Hill, at Master street and the Pennsylvania Railroad. This work was begun March 6th and finished July 6, 1891.

A thirty-six (36) inch supply main was laid from Twentyseventh and Thompson streets to Twenty-ninth and York streets, passing under the Pennsylvania Railroad tracks at Ridge avenue.

Southeast of the Ridge avenue bridge the pipe was deflected at an angle of 45° to a depth of 27 feet 5 inches, and continued thence nearly level and northwestwardly under the bridge abutments and railroad tracks to a corresponding point northwest of the bridge, where it was deflected to the surface or proper depth for continuing the main.

The difficulty in doing this work was greatly increased by the great number of trains running on the Pennsylvania Railroad, and the large amount of travel on Ridge avenue; also by quick-sands, the latter undermining the walls of the bridge, so that special care had to be used to preserve the same. A brick chamber and iron manhole were built over the pipe at each end of the bridge to facilitate any needed repairs without excavating therefor.

A twenty (20) inch main was also laid from Montgomery avenue and 'Twenty-seventh street to Broad and Norris streets.

The above two mains were finished and water turned on September 8, 1891.

In the Fifth District provision was made to supply to and from the New Roxborough reservoir by laying the necessary mains through the embankments.

In the Sixth District, Germantown, a twenty (20) inch supply main was laid in Wissahickon avenue, from Allen's
lane to Rittenhouse street, and a twelve (12) inch main was laid from the latter street to Manheim street.

In Rittenhouse street a sixteen (16) inch main was laid from Wissahickon avenue to Pulaski avenue.

Broken Mains.

There have been but few mains of the larger sizes broken this year, and at the Spring Garden Works, where breaks were frequent during 1890, there have been none, and but seven joints that leaked. The following shows the total number of breaks in pipes of all sizes throughout the City:

The above does not include leaks, but only cases where the pipe-casting actually broke.

Distribution.

The water supply of the several districts remains substantially as stated in the Report for the year 1890, although much improved by the laying of the supply mains above stated, particularly in the eastern part of the First District, the southern part of West Philadelphia, and the lower end of Germantown.

While much has been done to improve these sections, it will be found during the coming year that additional supply
mains will be needed, particularly in the old city proper and the Twenty-fourth Ward, also in the southern part of the First District.

District Offices and Yards.

The First, Second, Third and Fourth Districts are fairly well equipped with offices and yards, and the Fifth and Sixth Districts should be provided for in a similar manner.

In the First District an addition has been made to the shed, and a new storehouse built. A wide strip in front of the stable, shed and store-rooms has been paved with cubical blocks.

The Third District office was moved from No. 1420 Frankford avenue to the old Kensington pumping station, at Beach and Susquehanna avenue, March 17, 1891. It has been fitted up with offices, store-rooms, blacksmith shop and stable, and a new fence has been built to enclose that portion of the wharf property to be used by the Bureau of Water. With more storage room for pipes, castings, etc., it would be a model district office and yard.

In the Fourth District an extension has been made in order to provide shed room for sheer-poles and capstans, and a room for the storage of ropes, blocking, etc.
The paths in the yard are made of oyster shells and present a good, as well as serviceable, appearance.

An additional year's experience in owning horses and wagons instead of hiring them for the uses of the several districts of the Bureau, as was formerly the case, has proven not only satisfactory, but the best for efficiency and economy.

The Fifth and Sixth Districts should be provided in like manner.

Meters.

One hundred and seventy (170) meters have been set in new locations; one hundred and thirty-five (135) that were
defective or where a different size or style was required, have been renewed, and twenty-five (25) taken out where the use of water by meter was discontinued.

The total numb-r of meters in use December 31, 1891, was six hundred and ninety-seven (697) ; the number in stock, one hundred and fifty-three (153), making a total of eight hundred and fifty (850) in use and on hand, including two (2) private meters and six (6) received on trial.

Paving Materials.

Mr. George A. Bullock, Chief of the Bureau of Highways, furnished to the Bureau of Water the following material free of charge :

First District :

818 square yards of cubical blocks.
208 square yards of Belgian blocks.
45 square yards of flagstone.
Third District :
329 square yards of cubical blocks.
Fourth District:
252 square jards of Belgian blooks.
150 square yards of cobble atonee.
447 feet of curb stones.
50 feet of 6 -inch best granite stone.
Respecrfully,
ALLEN J. FULLER,
Assistant Engineer in charge of Distribution.

IRON SERVICE AND SUPPLY MAINS LAID IN 1891.

First District.

Comprising the First, Second, Third, Fourth, Twenty-sixth and Thirtieth Wards.

Locatio	Size in	Dista
Service Mains. Bancroft street, from south house line of Miftlin, north to connect dead end. \qquad		
	6	
Beulah street, from 5 feet south of centre of Tasker, north. Bonsall street, from 12 feet south of south house line of Oakford to Federal.	6	
Broad street, east side, from 2 feet south of south house line of Mittlin to Moore.	6	
Burd street, from Queen to Catharine. Cantrell street, from centre of Old Second street to 12 feet west of east house line of Fourth...		
	6	622
Cross street, from Long lane to 12 feet west of east house line of Twenty-third.	6	
Dickinson street, from 10 feet west of southeast curb line of Long lane to Twenty-second.	6	156
Dudley street, from 5 feet west of east house line of Otsego, west. \qquad	6	
Durfor street, from 5 feet east of west house line of Fourth to Fifth	6	
East Second street, from north curb line of Snyder avenue to centre of McKean. \qquad	6	400
Eighteenth street, from 13 feet south of centre of Moore to Fernon		
Emily street, from centre of Otsego, west Emily street, from 17 feet east of centre of East Second street, west.	6	
	6	
Federal street, from 9 feet west of southeast curb line of Moyamensing avenue to dead end, 97 feet west of west house line of Fourth \qquad	8	803
Fifth street, from dead end $\overline{5}$ feet north of south curb line of Sinyder avenue, north to connect.	10	
Fifth street, from 1 foot norih of south house line of Durfor to dead end 12 feet south of north house line of Wolf..	6	194
Fifteenth street, east side, from Miftlin to Moore....	6	
Fourth street, from 2 feet south of south house line of Snyder avenue, north	6	
Fourth street, from 10 feet north of south curb line of Snyder avenue, north \qquad	10	
Front street, from 2 feet south of south curb line of Snyder avenue to centre of Emily..	6	
armony street, from 201 feet south of south house line of Whart,n, north. \qquad		

Street. Location.	Size in inches.	Distance in feet.
Service Mains-Continued.		
Hill street, fro:: 174 feet east of east house line of Fifteenth, west.	6	199
Jackson street, from centre of Twelfth, west.	6	21
Juniper street, from dead end 2 feet north of north house line of Mifllin to dead end south house line of Canal...	6	124
Latona street, from east house line of Twenty-eighth, west.	6	25
Latona street, from centre of Thirty-second, west.............	6	12
Letitia street, from 2 feet south of south curb line of Snyder avenue, north	6	13
Lingo street. from 4 feet north of south curb line of Passyunk avenue, north.	6	241
Mcclellan street, from west curb line of Eighteenth to dead end 3 feet west of east curb line of Nineteenth............	6	423
McClellan street, from Eleventh to Gerhart	6	296
McKean street, from east house line of Otsego to centre of Front	6	287
Mercy street, from centre of Otsego, west.	6	13
Mercy street, from Front to east Scoond	6	444
Miftlin street from east to west house line of Bancroft......	6	50
Mifflin street, from west curb line of Nineteenth to east house line of Twentieth.	6	410
Mifflin street, from west house line of Twentieth, west.......	6	86
Mifflin street, from dead end 88 feet east of east house line to dead end 45 feet west of east house line of Broad....	6	133
Moort street, from dead end 5 feet west of east house line of Seventeenth to 12 feet west of west house line of Eighteenth	6	503
Morris street, from dead end 155 feet west of west house line of Seventeenth to dead end 38 feet west of east house line of Eighteenth. \qquad	6	279
Mountain street, from Eighteenth, west...................	6	21
Moyamensing avenue, southeast side, from 9 feet southwest of north curb line of sinyder avenue north to connect dead end.	6	14
Moyamensing avenue, northwest side, from 9 feet southwest of north curb line of Snyder avenue north to connect dead end.	6	14
Oakford street, from Twenty-eighth, west..	6	25
Otsego street, from north curb line of Snyder avenue to dead end south house line of Mittlin.	6	834
Parket street, from south house line of Carpenter, north ...	6	25
Pierce street, from dead end 12 feet east of Eighteenth, west, to connect dead end.	6	12
Reed street, from dead end 183 feet west of west house line of Twenty-second to east curb line of Twenty-third...	6	245
Reed strent, from east to west house line of Twenty-righth	6	50
Ritchie street, from south house line of Fitzwater, north...	6	25
Ritner street, from east to west house line of sixth......	6	50

Street. Location.	$\underset{\substack{\text { Siso in } \\ \text { inches. }}}{ }$	Din
Service Mains-Continued. Seventeenth street, from 13 feet south of centre of Moore, north to connect dead end. Siegel street, from west curb line of Eighteenth to dead end 2 feet east of east curb line of Nineteenth... Sixth street, from dead end 323 feet south of south house line of Shunk to Ritner. Snyder avenue, south side, from 2 feet west of east curb line of Front, west. Snyder avenue, north side, from 13 feet east of centre of Front, west. Snyder avenue, south side, from 2 feet east of east house line of Old Second to 27 feet west of east house line of Fifth. Snyder avenue, north side, from 4 feet east of east house line of Old Second to 31 feet west of east house line of Fourth Taylor street, from Twenty-second to 12 feet west of east house line of Twenty-third. Thirty-fifth street, from 145 feet south of south house line of Wharton, north to dead end. Thirty-fifth street, from north house line of Wharton, north ... Thirty-fourth street, from north house line of Reed to Wharton.. Thirty-second street, from centre of Wharton to 6 feet north of south curb line of Gray's Ferry Road. Thurlow street, from dead end 225 feet west of west house line of Twelfth, west. Titan street, from west house line of Twenty-sixth to 25 feet west of east house line of Twenty-eighth.. Tree street, from west curb line of Eleventh to dead end 8 feet west of west curb line of Twelfth... Twelfth street, from centre of Jackson north to connect dead end.. Twenty-eighth street, from 1 foot north of south house line of Reed, north to connect dead end.. Twenty-seventh street, from south curb line of Wharton, north . Watkins street, from dead end, east house line of Eighteenth, west to connect dead end. Watkins street, from west curb line of Twenty-second to Long lane Wharton street, from east curb line of Twenty seventh to west house line of Twenty-eighth. Winton street, from centre of Old Second to 12 feet west of east house line of Fourth... Wolf street, from west curb line of Fourth to Fifth............. Total.		
	6	
	6	418
	6	
	8	
	8	1,151
	8	
	6	464
	6	
	6	305
	6	428
	6	
	6	107
	6	867
	6	
	6	110
	6	278
	6	
	6	25
	6	357
	6	484

Street. Location.	Size in inches.	Distance in feet.
Supply Mains.		
Bainbridge street, from west house line of Front to east house line of Broad.	30	6,13I
Moyamensing avenue, southeast side. from 16 feet north east of south curb line of Snyder avenue, northeast to connect dead end.	16	51
Snyder avenue, south side, from southeast curb line of Moyamensing avenue to 16 feet west of west house line of Fifth	16	618
Total		6,800
Supply Main Connections.		
Bainbridge and Front streets, between 30 -inch main on Bainbridge and 8 -inch main on Front.	10	37
Bainbridge and Second streets, between 30 -inch main on Bainbridge and 6 -inch main on Second..	10	19
Bainbridge and Third streets, between 30 -inch main on Bainbridge and 6 -inch main on Third.	10	18
Bainbridge and Fourth streets, between 30 -inch main on Bainbridge and 6 -inch main on Fourth..	10	30
Bainbridge street and Passyunk avenue, between 30 -inch main on Bainbridge and 10 -inch main on Passyunk avenue.	12	32
Bainbridge and Sixth streets, between 30 -inch main on Bainbridge and 6 -inch main on Sixth .	10	21
Bainbridge and Seventh streets, between 30 -inch main on Bainbridge and 6 -inch main on Seventh.	10	28
Bainbridge and Eighth streets, between 30 -inch main on Bainbridge and 10 -inch main on Eighth.	12	17
Bainbridge and Ninth streets, between 30 -inch main on Bainbridge and 6-inch main on Ninth.	10	27
Bainbridge and Tenth streets, between 30 -inch main on Bainbridge and 6-inch main on Tenth	10	27
Bainbridge and Eleventh streets, between 30 -inch main on Bainbridge and 10 -inch main on Eleventh................	12	34
Bainbridge and Twelfth street 4 , between 30 -inch main on Bainbridge and 6 -inch main on Twelfth.	10	25.
Bainbridge and Thirteenth streets, between 30 -inch main on Bainbridge and 6 -inch main on Thirteenth.	10	18
Fourth street and Snyder avenue, between 6 -inch main on Fourth street and 16-inch main on Snyder avenue	12	19
		352
Fire hydrant connections..	6	1,252

Street. Location.	Sizes in inches.	Distance in feet.
Supply Connections (private).		
Eighth street, west ade, 118 feet south of south house line of Mifflin, for public bath-house... Gray's Ferry road, from 20-inch main 18 feet north of north curb line of Washington avenue, west, for U.S. Arsenal. Reed street, north side, 43 feet feet west of west house line of Huhn, for Philadelphia Traction Co... Thirty-fifth street, 300 feet north of north house line of Gray's Ferry road, for Harrison Chemical Works...... Total	4 6 3 3	46
Pipe relaid.		
rton street, fr	6	26
Bainbridge street, from Ninth to 63 feet west of east house line of Eleventh.	6	911
Barlow street, from centre of Reed north. Carbon street, from 9 feet south of south house line of Bainl,ridge, north.	6 6	25 62
Diamond street, from centre of Fitzwater, north Erie street, from 9 feet south of south house line of Bainbridge. north.	6 6	12 23
Espey street, from 1 foot south of south house line of Fitzwater, north.	6	25
Fitzwater street, from Eleventh to 8 feet west of east curb line of Broad.	10	1,450
Florida street, from 5 feet south of south house line of Fitzwater, north.	6	55
Hepburn street, from 3 feet north of north house line of Fitzwater to Bainbridge	6	329
Jane street, from southeast house line of Passyunk arenue, west.	6	21
Jessup street, from 4 feet south of south house line of Fitzwater, north.	6	29
Juniper street, from 1 foot south of south house line of Fitzwater, north..	6	51
Lingo street, from 2 feet south of south house line of Carpenter, north	${ }^{6}$	27
Milton street, from centre of Tenth to Twelfih..............	6	875
Park street, from centre of Catharine to 3 feet south of south honse line of Fitzwater.	(1)	345
Park street, from 2 feet east of east house line of Twentyeighth, west..	6	27
Passyunk avenue, southeast side, from 49 feet northeast of north honse line of Queen to Catharine. Pharo street, from centre of Catharine to 3 feet south of south house line of Fitzwater..................................	6 6	21

Street. Location.	Sizes in inches.	Distance in feet.
Pipe relaid-Continued.		
Reed street, from centre of Fifth to east house line of Seventh.	6	867
Stocker street, from 4 feet south of south house line of Carpenter, north.	6	29
Tudor street, from centre of Tasker, north.....................	6	16
Ward street, from 2 feet south of south house line of Carpenter, north Webb street, from centre of Catharine to 6 feet south of north house line of Fitzwater.	6	27 341
Total.		6,130
Fire hydrant connections relaid....................	6	431
Repairs, general	4	33
	6	778
*	8	40
" " ...	10	25
" " ...	12	14
Total.		890
Pipe taken up.		
Atherton street, from centre of Carpenter, north.............	3	26
Barlow street, from centre of Reed, north......................	4	25
Carbon street, from 6 feet north of south curb line of Bainbridge, north.		35
Diamond street, from centre of Fitzwater, north..............	4	12
Erie street, from 9 feet south of south house line of Bainbridge, north.	4	30
Espey street, from south house line of Fitzwater, north....	3	25
Fitzwater street, from 26 feet east of west house line of Eleventh to 8 feet west of east curb line of Broad......	6	1,448
Florida street, from south house line of Fitzwater, north...	3	55
Jessup street, from south house line of Fitzwater, north...	3	28
Juniper street, from south house line of Fitzwater, north..	4	51
Lingo street, from 2 feet south of south house line of Carpenter, north.	4	26
Milton street, from centre of Tenth, west.	2	350
Milton street, from 350 feet west of centre of Tenth, west..	3	125
Park street, from Catharine to Fitzwater...................	4	345

8treet. Location.	Sise in inches.	Distance in feet.
Pipe taken up-Continued.		
Park street, from 2 feet east of east house line of Twentyeighth, west.	4	27
Pharo street, from Catharine to Fitswater.......................	4	345
Reed street, from centre of Fifth to east house line of Seventh.	4	866
Stocker street, from 4 feet wouth of south house line of Carpenter, north.	4	28
Ward street, from 2 feet south of south house line of Carpenter, north. Webb street, from Catharine to Fitzwater..	4 3	27 341
Total...		4,215
Fire hydrant connections taken up...............................	4	310
Fire hydrant connections taken up..............................	6	19
		329
Pipe cut off and abandoned.		
Carbon street, from 9 feet south of south house line of Bainbridge, north.	3	22
		22
Fire hydrant connections cut off and abandoned.............	4	464
Fire hydrant connections cut off and abandoned...............	6	25
Total ...		489

Recapitulation of First District.

Purposes for which Used.	Size-Inches.									Total in feet and pounds.
	2	3	4	6	8	10	12	16	30	
廿 $\int \begin{aligned} & \text { Service mains.............................. } \\ & \text { Supply mains..................... }\end{aligned}$.	17,957	2,929	48		669	6,131	20,934 6,800
* ${ }_{\text {cter }}^{\text {Supply main connections.................... }}$						250	102			${ }^{6} 352$
			16	1,252 30	1,252 46
\% Total $\left\{\begin{array}{l}\text { Feet } \\ \text { Pounds }\end{array}\right.$			16 304	$\begin{array}{r} 19,239 \\ 634,8 \end{array}$	$\begin{array}{r} 2,929 \\ 123,018 \end{array}$	$\begin{array}{r} 298 \\ 16,390 \end{array}$	$\begin{array}{r} 102 \\ 7,344 \end{array}$	$\begin{array}{r} 669 \\ 73,590 \end{array}$	$\begin{array}{r} 6,131 \\ 2,035,492 \end{array}$	$\begin{array}{r} 29,384 \\ 2,891,025 \end{array}$
*0. $\quad \begin{aligned} & \text { Pipe relaid......... } \\ & \text { Repairs general. }\end{aligned}$			33	5,111	40	1,450			6,561
	350 3,500	600 9,000	2,125 40,375	7,391 243,903	40 1,680	1,475 81,125	14 1,008		$11,995$
首: Total handled $\left\{\begin{array}{l}\text { Feet......... } \\ \text { Pounds } . . .\end{array}\right.$	350 3,500	$\begin{array}{r} 600 \\ 9,000 \end{array}$	2,141 46,679	$\begin{array}{r} 26,630 \\ 878,7 \end{array}$	$\begin{array}{r} 2,969 \\ 124,698 \end{array}$	1,773 97,515	116 8,352	$\begin{array}{r} 669 \\ 73,590 \end{array}$	$\begin{array}{r} 6,131 \\ 2,035,492 \end{array}$	$\begin{array}{r} 41,379 \\ 3,271,616 \end{array}$
Pipe cut off and abandoned		22	464	25						511

Street. Location.	Size in inches.	Distance in feet.
Service Mains.		
Ashland avenue, from centre of Fifty-eighth, southwest..	6	278
Barker street, from 6 feet west of centre of Sixteenth to Seventeenth \qquad	6	440
Cathedral avenue, from Fiftieth to dead end 17 feet west of east house line of Fifty second.	6	908
Chester avenue, from 21 feet east of centre of Fifty-second to Fifty-fourth	6	1,061
Conest/ga street, from south house line of Hunter's lane, north \qquad	6	20
Conestoga street, from south house line of Thompson, north to connect dead end.	6	66
Elmwood avenue, from Fifty-ninth to Sixtieth..	6	577
Fairmount avenue, from Lancaster avenue to Mount Vernon.	6	236
Fiftieth street, from centre of Greenway avenue, northwest. Fiftieth street, from south house line of Hlorence avenue to	6	533
Pentridge................................	6	241
Fifty-fifth street, from Lansdowne avenue to dead end 11 feet 2 inches north of centre of Hunter's lane.	6	320
Fifty-fourth street, from Chester avenue to Springfield......	6	498
Fifty-fourth street, from Wyalusing avenue to Supplee.	6	363
Fifty second street, from Market to Filbert.	6	311
Filbert street, from centre of Fifty-second, west	6	196
Florence avenue, from northeast house line of Fiftieth to Fifty-first	6	506
Forty-eighth street, from 6 feet southeast of centre of Glenmore to Paschall.	6	189
Forty-eighth street, from Springfield avenue to 37 feet 3 inches northwest of centre of Warrington.	6	617
Forty-eighth-and-one-half street, from centre of Paschall avenue northwest to dead end	6	8
Forty-fourth street, from Chestnut to Marke	6	551
Forty second street, from dead end 3 feet south of centre of Mantua avenue, north.	6	3
Forty-seventh street, from dead end 417 feet 8 inches northwest of centre of Gray's Ferry road to Woodland avenue	6	627
Forty-third street, from dead end 14 feet south of centre of Mantua avenue, north.	6	14
Forty-third-and-one-half street, from centre of Ogden north to connect dead end..	6	149
Forty-third-and-one-half street, from dead end 6 feet 2 inches south of centre of Mantua avenue, north.	6	6
Glenmore avenue, from Forty-eighth to Hanson......	6	320

Street. Iocatiou.	Size in inches.	Distance in feet.
Service Mains-Continued.		
Greenway avenue, from dead end $30-5$ feet $6 i f$ inches northeast of northeast house line of Forty-ninth, northeast..	6	82
Greenway avenue, from Forty-ninth to Fiftieth	6	483
Grubb street, from 15 feet 1 inch east of east house line of Sycamore, west.	6	24
Hamilton street, from dead end 142 feet $4 \underset{2}{2}$ inches west of west honse line of Sixty-third to east curb line of Sixty-fourth.	6	372
Hanson street, from Glenmore to Paschall avenue.	6	186
Holly street, from Westminster to Mantua avenue.	6	415
Hunter's lane, from Fifty-fourth to 126 feet 10 inches west of centre of Fifty-fifth	6	656
Hutton street, from Parrish to Ogden.	6	381
Island road, from southeast house line of Paschall avenue to dead end 3 feet 6 inches northwest of southeast house line of Woodland avenue...............................	6	530
Jefferson street, from centre of Fifty-fifth,	6	237
Kent street, from centre of Fifty-fifth, west	6	13
Lansdowne avenue, from Lancaster avenue to Fifty-fourth.'	6	748
Lloyd street, from southeast to northwest house line of North.	6	50
Ludlow street, from dead end 12 feet west of west house line of Forty-third to Forty-fourth.	6	327
Mantua avenue, from Forty-first to Forty-fourth	6	1,771
North street, from Island road to 13 feet northeast of centre of Seventy-secoud or Mud lane \qquad	6	1,058
Paschall avenue, from centre of Island road, northeast	6	35
Paschall avenue, from southwest house line of Sixty-ninth northeart to dead end	6	157
Paschall avenue from Hanson to Gray's Ferry road..........	6	580
Peach street, from 30 feet south of centre of Lansdowne, north	6	55
Pennsgrove street, from Mantua avenue to dead end east house line of Forty second.	6	522
Race street, from Sixty-third to 4 feet west of east curb line of Sixty-fourth	6	569
Rockland street, from centre of Thirty-ninth to Lancaster a venue.	6	390
Saybronk street, from Fiftieth, northeast to dead en	6	129
Saybrook street, from Forty-ninth to Hanson.	6	174
Seventy -second street, or Mud lane, from southeast house line of North, northwest.	6	56
Sixty-fourth street, from Vine to Callowhill	6	564
Sixty-third-and-one-half street, from south to north house line of Race.	6	60
Sloan street, from Fairmount avenue to Aspen	6	412
South street, from dead end 21 feet east of east house line of Sixty-first, west.	6	99

Street. Location.	Size in inches.	Distance in feet.
Service Mains-Continued.		
Springfield avenue, from Forty-ninth to 2 feet west of west house line of St. Bernard place.	6	294
Springfield avenue, from Fifty-fourth; to 170 feet 7 inches west of centre of Fifty-fifth	6	694
St. Bernard place, from dead end 51 feet 5 inches southeast of centre of Springfield avenue, northwest.	6	51
Sycamore street, from Spruce to Locust..........................	6	452
Thirtieth street, from south house line of Marston to dead end south house line of Locust.	6	943
Thirth-first street, from Baring to Hamilion.	6	268
Thirty-fourth street, from Filbert to Lancaster avenue......	6	261
Thompson street, from dead end 4 feet east of west house line of Fifty-fourth to west house line of Conestoga.....	6	284
Thumpson street, north side, from Sixty-first street, west....	6	126
Warren street, from 30 feet south of centre of Lansdowne avenue, north \qquad	6	30
Warrington avenue, from dead end west house line of Forty-seventh to 37 feet 4 inches west of centre of Forty eighth	6	497
Wyalusing avenue, from Mantua avenue to Forty-third.....	6	471
Total		24,544
Supply Mains.		
Fifty-second, from Woodland avenue to Baltimore............	30	4,655
Fifty-second street, from Baltimore avenue to dead end south curb line of Walnut.	36	3,360
Haverford avenue, from Thirty-fifth street to Lancaster avenue	20	2,510
Fortleth street, from Haverford to Lancaster avenue.........	20	127
Tota	,	10,652
Supply Main Connections.		
Fifty-second street and Woodland avenue, between 30 -inoh main on Fifty-second and 12 -inch main on Woodland avenue \qquad	$\begin{aligned} & 16 \\ & 20 \end{aligned}$	30 8
Fifty-second street, 16 feet southeast of northwest curb line of Greenway avenue, from northeast side of 30 -inch main, southeast	10	7
Fifty-second street. 13 feet 5 inches southeast of northwest curb line of Kingsessing avenue, from northeast side of 30 -inch main, southeast \qquad	10	7

Street. Location.	Size in inches.	Distance in feet.
Supply Main Connections-Continued.		
Fifty-second street and Chester avenue, between 30 -inch main on Fifty second street and 6 -inch main on Chester avenue.	10	15
Fifty-second street, 13 feet 3 inches southeast of northwest curb line of Springfield avenue, from northeast side of 30 -inch main, southeast.	10	
Fifty-second street, 13 feet southeast of northwest curb line of Warrington, from northeast side of 30 -inch main, southeast	10	7
Fifty-second street, 12 feet 4 inches southeast of northwest curb line of Florence, from northeast side of 30 -inch main, southeast	10	
Fiftysec nd street. 15 feet southeast of northwest curb line of Whitby avenue, from northeast side of 30 -inch main, southeast	10	7
f ifty-second street and Baltimore avenue, between 36 inch main on Fifty-second and 12-inch main on Baltimore avenue \qquad	16	32
Fifty - econd street, 9 feet south of north curb line of Catharine, from east side of 36 -inch main, east.	10	
Fifty-second street, 16 feet south of north eurb line of South, from east side of 38 -inch main, east..	10	
Fifty-second street, 9 feet south of north curb line of Lombard, from east side 36 -inch main, east..	10	7
Fifty-second street, 10 feet south of north curb line of Pine, from east side of 36 -inch main, east.	10	
Fifty -second street, 15 feet south of north curb line of Spruce, from east side of 36 -inch main, e:ist.	10	7
Fitty-second street, 8 feet 6 inches north of north curb line of Locust, from east side of 36 -inch main, southeast...	20	28
Total.		190
Fire hydrant connections.	6	1,499
Fire Connections (private).		
Chestnut street, north side, 143 feet east of east house line of Thirty-second, for Drexel Institute.	6	26
Delaware avenue, east side, 25 feet south of south house line of Market (connected to old 4-inch fire hydrant connection), for West Jersey Ferry Co..	4	5
Twent-fifth street, west side, 181 feet south of south house line of Spruce, for Tracy Worsted Mills..	4	18
Total.		49

Streat. Location.	Size in inches.	Distance in ieet.
Supply Connections (private).		
Chestnut street, north side, 100 feet east of east house line of Thirty-second, for Drexel Institute.	3	
Eleventh street, east side, 11 feet north of north house line of Marble alley, for Bingham House Hotel.	4	16
Gray's Ferry road, south side, 224 feet east of southeast house line of Paschall avenue, for Baltimore and W. R. R. Co.	3	29
Jayne street, south side. 93 feet east of east house line of Ninth, for Girard House Hotel..	3	7
Market street, south side, 491 feet east of east house line of Thirtieth, for West Philadelphia Market Company..	3	86
Ninth street, east side, 249 feet north of north house line of Pine, for Pennsylvania Hospital.	4	24
Pine street, south side, 9 feet west of east house line of Guardian avenue, for Philadelphia Almshouse..........	6	30
Sycamore street, west side, 123 feet 9 inches south of south house line of Locust, for J. M. Shamp, hotel and theatre...	4	6
Total.		198
Motor Connections.		
Ludlow street, south side, 173 feet east of east house line of Thirty-second, for Drexel Institute.	3	15
Market street, south side, 41 feet east of east house line of Thirty-seventh, for Edward Lyster.	6	18
Total.		33
Drains.		
Fifty-second street, 129 feet north of north house line of Willow avenue from 30 inch main.	6	7
Pipe Relaid.		
Barclay street, from Sixth to Eighth.	6	878
Barkor street, from Seventeenth to Twentieth................	6	1,343
Clinton street, from Ninth to Tenth.............................	6	435
Delancey Place, from Eighteenth to Nineteenth..............	6	448
Factory street from 28 feet east of centre of Twenty-fifth, west.	6	56
Ludlow street, from centre of Forty-third, west...............	6	42
Quince street, from Lombard to Spruce..	6	878

Street. .Location.	Size in inches.	Distance in feet.
Pipe Relaid-Continued.		
Silver street, from Twelfth to Juniper..........................	6	704
Thirty-second street, from 482 feet 6 inches south of south house line of Chestnut (private supply connection)....	6	20
Twenty-fifth street, from 3 feet north of north house line of Spruce to Pine.	6	555
Twenty-third street, from dead end 14 feet north of north house line of Market to Arch.	12	701
Union street, from Front to Fourth...............................	6	1,457
Total.		7,517
Fire hydrant connections relaid.	6	722
Repairs, general..	4	13
	6	642
،	8	24
" ${ }^{\text {c }}$	10	67
${ }^{6}$	12	92
" "	16	19
" ، ...	20	42
Total.		899
Pipe Taken Up.		
Barclay street, from Sixth to Eighth.............	3	878
Barker street, from Seventeenth to Twentieth.	3	1,354
Clinton street, from Ninth to Tenth.	3	435
Cuthbert street, from 268 feet east of east house line of Twelfth, west.	,	293
Delancey Place, from Eighteenth to Nineteenth..............	4	448
Factory street, from 28 feet east of centre of Twenty-fifth, west	3	56
Grubb street, from 15 feet 1 inch east of east house line of Sycamore, west	4	24
Ludlow street. from centre of Forty-third, west..	4	42
Quince street, from Lombard to 173 feet north of centre of Pine.	3	518
Quince street, from 278 feet south of south house line of Spruce, north.	3	310
Silver street, from centre of Twelfth, west..	3	194
Silver street, from 244 feet west of west house line of Twelfth to 104 feet west of west house line of Thirteenth.	3	287

treat. Location	Size in inches.	Distanco
Pipe Takeu Up-Continued. Silver street, from 125 feet west of west house line of Thirteenth to Juniper. Thirty-second street, from 482 feet 6 inches south of south house line of Chestnut (private supply connection).... Timothy street, from 132 feet south of south house line of Graff, north.. Twenty-fifth street, from 3 feet north of north house line of Spruce to Pine Twenty-third street, from 18 feet south of south house line of Filbert street, north.. Twenty-third street, from 11 feet south of north curb line of Arch, north.. Union street, from Front to Fourth.. Urbana street, 104 feet north of north house line of Urbana... Total. \qquad Fire hydrant connections taken ${ }_{\text {u }}$ up. \qquad " \qquad Total. \qquad Pipe Lowered. Cixty-first street, from 20 feet north of north house line of Haverford avenue, north. \qquad Pipe Raised. Lansdowne avenue, intersection of Fifty-fifth-and-one-half street (over sewer).. Pipe Cut Off and Abandoned. Graff street, from 81 feet east of east curb line of Madison, west. Quince street, from 148 feet north of north house line of Pine, north. Sheaff street, from 131 feet east of east curb line Madison, west... Silver street, from 169 feet west of west house line of Twelfth, west..		
	3	
	6	
	3	
	3	
	4	
	4 6	1,457
		7,055
	,	
		93
	6	300
	6	
	6	
	3	60
	4	131

165

Street. Location.	Size in inches.	Distance in feet.
Pipe Cut Off and Abandoned-Continued.		
Silver street, from 104 feet west of west house line of lhirteenth, west.	3	21
Timothy street, from 81 feet east of east curb line of Madison avenue, west.	6	81
Twenty-third street, from 134 feet south of south house line of Filbert street, north.	4	116
Twenty-third street, from Filbert to Arch......................	4	370
Total..		925
Fire hydrant connections cut off and abandoned..............	3 4	44 279
Total.		323

Recapitulation of Second District.

Purposes for which Used.	Size-Inches.										Total in feet and pounds.
	3	4	6	8	10	12	16	20	30	36	
S Service mains..................................			24,544						24,544
$\rightarrow \quad$ Supply mains...					92	..	62	2,637 36	4,655	3,360	10,652 190
© Fire hydrant connections.........................			1,499				62				1,499
\%\%,-̇ Fire connections (prirate)....................	\cdots	23	26	49
¢, \%\% $\left\{\begin{array}{l}\text { Supply connections (private).................. } \\ \text { Motor connections (private).......... }\end{array}\right.$	122	46	30	198
运保 Drains...	15		+ 7			.					38 7
'z Total...... $\left\{\begin{array}{l}\text { Feet.................... }\end{array}\right.$	137	69	26,124		92		62	2,673	4,655	3,360	37,172
otal...... $\{$ Pounds.................	2,055	1,311	862,092		5,060		6,820	425,007	1,545,460	1,417,920	4,265,725
			7,538			701					8,239
	- 4,877	13 2,637	642 475	24	67	92	19	42	899 7,989
			300								7989 300
		12			12
	4,877	2,650	8,967	24	67	793	19	42			17,439
	75,155	50,350	295,911	1,008	3,685	57,096	2,090	6,678			489,973
Total handled....... $\left\{\begin{array}{l}\text { Feet................... }\end{array}\right.$	5,014	2,719	35,091	24	159	793	81	2,715	4,655	3,360	54,611
Total handed...... $\{$ Pounds................	75.210	51,661	1,158,003	1,008	8,745	57,096	8,910	431,685	1,545,460	1,417,920	4,755,698
Pipe cut off and abandoned..........................	190	896	162							1,248

Third District.
Comprising the Eleventh, Thelfth, Sixteenth, Serenteenth, Eighteenth, Ninetecnth, Twenty-third, Tuenty-ijith, and part of the Thirty-third Ward.

Street. Location.	Size in inohes.	Distance in teet.
Service Muins.		
Abigail street, from centre of Amber to dead end southeast house line of Coral	6	375
Allegheny avenue, south side, from 241 feet east of east house line of Front, west.	6	271
Allegheny avenue, south side, from east to west house line of Second.	6	60
Allegheny avenue, north side, from 63 feet west of west house line of B to Front.	6	1,008
Allegheny avenue, east to west house line of Second	6	60
Altmaier street, from east house line of Mascher, west.	6	25
A mber street, from 12 feet northeast of southwest house line of Ann, northeast	6	13
American street. east side, from 305 feet south of south house line of Diamond street, north to dead end........	6	195
American street, east side, from south house line of Cambria, north.	6	38
American street, west side, from 12 feet north of south house line of Cambria, north	6	26
American street, from south house line of Ontario, north..	6	50
Ann street, from Belgrade to Giaul.	6	354
Ann street, from 12 feet sulheast of northwest house line of Trenton avenue to Amber.		540
Artisan street, from south house line of Ball, north..........	6	25
Athol street, from Cleartield to south curb line of Allegheny avenue	6	555
Beach street, from dead end, south house line of Fairmount avenue, north..	6	87
Bermuda street, from Orthodox to Margaretta................	6	514
Birch street, from Amber street to Frankford avenue	6	425
Cambria street, from Front to Howard.	6	301
Cambria street, from dead end east house line of Philip to dead end, 14 feet east of west house line of American.	6	280
Cedar street, from southwest to northeast house line of Howarth	6	50
Cedar street, from southwest curb line of Wakeling, northeast.	6	39
Cemetery avenue, from Emerald to Malvern.	6	217
Church street, from Seventh to Eighth..	6	368
Clarion street, from dead end 77 feet 3 inches south of south house line of Clearfield, north.	6	107
Clearfield street, from 12 feet east of centre of Second, west.	6	24
Clearfield street, from Kensington to west house line of F..	12	574

Street. Locrtion.	Size in inches.	Distance in feet.
Service Mains-Continued.		
Cooper street, from 12 feet north of south house line of Tioga, north.	6	24
(uster street, from centre of Clearfield, north.................	6	13
Darien street, from Somerset to Cambria.	6	550
Eighth street, from somerset to dead end, south house line of Cambria.	6	525
Ella street, from Cambria to Indiana..	6	552
Emerald street, from Somerset, northeaat	6	35
Fyre street, from dead end 302 feet northwest of northwest house line of Thompson to Belgrade.	6	254
" F" street, from south to north house line of Clearfield.	6	50
Fairhill street, from Glenwood avenue, north.	6	230
Fillmore street, from 2 feet southeast of northwest house line of Cedar northwest to dead end.	6	32
Foulkrod street, from Leiper to "P"	6	2,375
Fox street, from Ontario to Tioga.	6	555
Franklin street, from Church, northeast.	6	20
Geisler street, from southeast house line of Almond to Belgrade	-	346
	6	49
Gurney street, from 4 feet 6 inches southeast of east house line of Front to 3 feet northwest of west house line of Mascher	6	720
Hancock street, from Somerset to India	6	1,050
Harrison (or liodfrey) street from centre of Jefferson, north	6	26
Haworth street, from Willow to 12 feet northwest of southeast house line of Frankford avenue.	6	907
Helen street, from 41 feet southwest of southwest house line of Sterner to Somerset.	6	538
Hope street, from 28 feet south of centre of Gurney, north	6	28
Horrucks street, from southwest house line of Unity, northeast.	6	50
Horrocks street, from southwest house line of Foulkrod, northeast.	6	50
Howard street, from 12 feet north of south house line of Tirga, north.	6	38
Howard street, 22 feet 4 inches north of southwest house line of Gurney, north	6	3
Hutchinson street, from Richfield to Cambria............	6	807
Indiana avenue, from 13 feet east of west house line of Rosehill to dead end 84 feet west of centre of Ormes.		279
Indiana avenue, from east house line of Hancock, west..	6	52
Indiana arenue, from west house line of Second to dead end 33 feet west of west house line of American....... Jasper street, from centre of Sterner, northeast to connect dead end.	6	427 202

Street. Location.	Size in inches.	Distance in feet.
Service Mains-Continued.		
Jasper street, from dead end 13 feet southwest of northeast house line of Hilton, northeast.	6	150
Joyce street, from 3 feet southwest of northeast house line of Kettlewell to 13 feet northeast of centre of Tioga..	6	315
Judge street, from Edgemont to Thompson.....................	6	241
Kensington avenue, southeast side, from Adams to Frankford avenue.	12	614
Kensington avenue, northwest side, trom Adams to Frankford avenue.	6	665
Large street, from southwest house line of Foulkrod, northeast	6	50
Lee street, from centre of Tinga, north.	6	26
Lippincott street, from east to west house line of Second...	6	60
Livingstone street, from south to north house line of Geisler.	6	30
Malvern street, from centre of Cemetery avenue, northeast.	6	19
Mascher street, from dead end 12 feet 6 inches north of southwest house line of Gurney. north	6	18
Mascher street, from south to north house line of Tioga....	6	50
Mutter street, from centre of Somerset to dead end south house line of Cambria.	6	525
Ninth st reet, from dead end 12 feet, south of north house line of Cambria to south line of Indiana avenue........	6	525
Oakland street, from southwest house line of Foulkrod, northeast.	6	50
Ontario street, from 3 feet 4 inches east of east house line of Second to dead end east house line of Third	6	692
Orianna street, from dead end 329 feet 6 inches north of north house line of Indiana to dead end southwest house line of Gurney. \qquad	6	126
Ormes street, from 12 feet north of south house line of Indiania avenue, north...	6	26
Orthodox street, from dead end 100 feet northw, st of northwest house line of Belgrade, northwest.	6	105
Orthodox street, from 2 feet southeast of southeast house line of Frankford avenue, northwest.		
line of Frankford avenue, northwest " P " street, from southwest house line of Foulkrod, north- east.	6 6	22 50
Philip street, from 8 feet north of south house line of Cambria to north house line of Indiana..	6	592
Philip street, from 140 feet south of south house line of Ontario, north.	6	$1!0$
Pink street, from 27 feet south of centre of Jefferson, north.	6	27
Potter street, from 12 feet west of east house line of " F " to centie of Clearfield.	6	423
Ruan st reet, from Frankiord avenue, northwest...............	${ }^{\text {i }}$	20
Salmun street, from Leferre to Buckius.........................	6	646

Street. Location.	Size in inchcs.	Distance in feet.
Service Mains-Continued.		
Second street, from end northwest house line of Indiana to dead end 141 teet 6 inches south of south house		
line of Ontario..........	6	2,123
Second street, from Glenwood, nor	6	226
Seltzer street, from Helen to Jasper	6	215
Seventh street, from Cambria to 275 feet north of north house line of Indiana avenue.	6	850
Silver street, from Helen to Jasper.	6	213
Somerset street, from Garnet to Kensington avenue.........	6	242
Sterner street, from Helen to Jasper..	6	213
Thomas street, from southwest to northeast house line of Bridge.	6	50
Tioga street, from Frankford avenue to 2 feet east of west house line of Joyce.	6	226
Tioga street, from Fox to Second.................................	6	1,433
Tioga street, frow 78 feet 2 inches east of centre of Turner to Sixth.	6	356
Trenton avenue, southeast side, from Norris to dead end southwest house line of Susquehanna avenue	6	560
Trenton avenue, southeast line, from dead end 10 feet southwest of northeast house line of Susquehanna avenue, northeast to connect..	6	50
Turner street, from Glenwood avenue, n	6	236
Turner street, from Tioga street, north..	6	52
Ulrick street, from Fairmount avenue to Mar	6	193
Unity street, from Wingohocking to Adam.	6	480
Wakeling street, from Willow to Frankford avenue.	6	912
Waterloo street, from dead end 12 feet 6 inches north of southwest house line of Giurney, north.	6	18
Westmoreland street, from 2 feet east of northwest house line of Trenton avenue, west.	6	84
Westmoreland street, from centre of Frankford avenue, west.	6	43
Westmoreland street, from east to west house line of Second	6	60
Windrim street, from centre of Clearfield, north	6	13
Worth street, from centre of Bridge, west......................	6	23
Wrecken street, from west house line of Commerce to Cedar.	6	373
Wyoming street, from centre of Ann, northeast..............	6	20
Total..		32.440

Street. Location.	8ize in inches	Distance in feet.
Supply Main Connections.		
Emerald street, 13 feet 10 inches southwest of southwest house line of Lehigh avenue between 12 and 6 -inch mains on Emerald.	10	
Emerald street, southwest house line of Lehigh avenue between 12 and 0 -inch mains on Emerald.	6	10
Total.		19
Fire hydrant connections.	6	2,318
Fire Conn		
Beach street, northwest side, 359 feet southwest of southwest house line of Laurel, for Shimmel \& Co............	4	8
Supply Connections (Private).		
Lehigh avenue, north side, 205 feet west of west house line of Leamy, for Bromley Sons..	4	11
Orianna street, east side, 125 feet north of north house line of Cumberland, for Joseph P. Murphy.....................	4	9
Philip street, west side, 181 feet south of south house line of Somerset, for Electric Light Company..	4	14
Second street, east side, 45 feet south of south house line of Oxford, for Quaker City Morocco Company..........	4	22
Susquehanna avenue wharf, north side, in cartway to old Pamp Station, 16 feet southeast of southeast house line of Beach street, for new yard of Third District		
Bureau of Water...	6	76 17
Total.		149
Pipe Relaid.		
A mber street, from centre of Westmoreland, northeast.	6	12
Ball street, from Beach to Richmond..	6	471
Beach street, from north honse line of Noble to 28 feet north of south house line of Green.	6	359
Beaver street, from Second to Canal.	6	418
Beaver street, from Charlotte to Fourth	6	212
Bridge street, from Thomas to southeast house line of Edmund.	6	714

Street. Location.	Size in inches.	Distance in feet.
Pipe Relaid-Continued.		
Brinton street, from 2 feet 6 inches south of south house line of Jefferson, north.	6	29
Charlotte street, from 27 feet south of north house line of Girard avenue to 10 feet north of south house line of	6	5
Clairbourne streel, from 2 feet south of south house line of Ball, north.	6	27
Darien street, from 12 feet south of centre of Norris, north.	6	12
Frankford avenue, from 20 feet northeast of southwest house line of Westmoreland, northeast.	10	28
Gordon street, from southeast house line of Tulip, northwest. \qquad	6	15
Gordon street, from 24 feet northwest of southeast house line of Tulip, northwest.	6	27
Green street, from east house line of Beach, west............	6	28
Hope street, from 13 feet north of south house line of Norris, north.	6	24
Howard street, from 13 feet 8 inches north of south house line of Norris, north.	6	14
Kressley street, from Norris, north.....................................	6	25
Manakin street, from 14 feet 6 inches southeast of centre of Norris, north.	6	15
Manakin street, from centre of Norris, north.................	6	14
Norris street, from east house line of Hope to west house line of Howard.	6	184
Norris street, from west house line of Fifth to 24 feet west of west house line of Kressler...	6	256
Norris street, from east house line of Darien to Ninth......	6	155
Orianna street, from C'umberland to Huntingdon.	6	555
Penn alley, from centre of St. John, west..	6	23
Sixth street, from south house line of Jefferson, north......	6	54
Sixth street, west side, from south curb of Columbia avenue, north.	6	17
Steam Mill alley, from 1 foot 9 inches east of east house line of St. John, west.	6	22
Trenton avenue, southeast side, from 40 feet northeast of northeast house line of Susquehanna avenue to 2 feet 6 inches northeast of centre of Dauphin..................	6	346
Vienna street, from Beach to Richmond.......................	6	296
Waterloo street, from centre of Westmoreland, northeast..	6	13
Westmoreland street, from 121 feet 2 inches southeast of southeast house line of Waterloo to Frankford avenue.	6	591
Wood street, from east to west house line of St. John.......	6	41
Total.		5,422

173

Streot. Location.	Size in inches.	Distance in feet.
Fire hydrant connections relaid....................................	6	479
Repairs, general..	4	3 797
" ${ }^{\text {a }}$	10	16
" ${ }^{\text {a }}$	12	34
Total		850
Pipe Taken Up.		
Amber strpet, from centre of Westmoreland, northeast...	6	12
Ball street, from Beach to Richmond..	4	471
Beach street, from north house line of Noble to 28 feet north of south house line of Green.	4	359
Beach street and Susquehanna avenue in cartway to old Pumping Station.	4	187
Beaver street, from Second to east house line ot St. John...	4	218
Beaver street, from 40 feet east of east house line of Canal, west.	4	60
Beaver street, from Charlotte to Fourth........................	4	212
Bridge street, from Thomas to southeast house line of Edmund.	6	714
Brinton street, from 2 feet 6 inches south of gouth house line of Jefferson, north.	4	29
Charlotte street, from Giirard avenue to Thompson...........	4	425
Clairbourne street, from 2 feet south of south house line of Ball, north.	4	27
Fisher street, from 18 feet south of centre of Westmoreland, north	6	18
Frankford avenue, from 20 feet northeast of southwest house line of Westmoreland, northeast....	10	28
Gordon street, from southeast house line of Tulip, northwest.	4	15
Gordon street, from 24 feet northwest of southeast house line of Tulip, northwest.	4	27
Green street, from east house line of Beach, west...............	6	28
Hope street, from 13 feet north of south house line of Norris, north	4	24
Howard street, from 13 feet 8 inches north of south house line of Norris, north	6	14
Kressler street, from Norris, north..	4	25
Manakin street, from 14 feet 6 inches southeast of centre of Norris, northwest.	4	15
Manakin street, from centre of Norris, north.................	4	14
Norris street, from east house line of Hope to west house line of Howard.	6	184
Norris street, faom west house line of Fifth to 24 feet west of west house line of Kressler.	6	256

Streen Location.	Size in inches.	Distance in feet.
Pipe Taken Up-Continued.		
Norris street, from east house line of Darien to Ninth.	6	155
Orianna street, from centre of Cumberland, north.	4	53
Orianna street, from 52 feet south of south house line of Huntingdon, north.	4	77
Penn alley, from centre of St. John, west	3	23
Sixth street, from south house line of Jefferson, north	4	54
Sixth street, west side, from south curb line of Columbia avenue, north.	6	7
Steam Mill alley, from 1 foot 9 inches east of east house line of St John, west.	3	22
Trenton avenue, southeast side, from 78 feet southwest of centre of Dauphin, northeast.	4	78
Vienna street, from east house line of Richmond, west.	4	27
Waterloo street, from centre of Westinoreland, riortheast..	6	13
Westmoreland street, from 121 feet 2 inches southeast of southeast house line of Waterloo to Frankford a venue. Wood street, from east to west house line of St. John........	6 4	91
Total.		4,513
Fire hydrant connections taken up.	4	517
Fire hydrant conneetions taken up...	6	16
Pipe lowered.		
James Street, from centre of Orthedox, northea	6	231
Orthodox street, from 131 feet southeast of southeast house line of James, northwest.	6	69
Orthodox street, from 192 feet southeast of southeast house		
line of Worth, northwest.	6	242
Second street, west side, from Ontario to south curb line of Tioga.	6	518
Worth street, from 54 feet southwest of southwest house line of Orthodox, northeast..	6	189
Total		1,450
Pipe cut off and abandoned.		
Beaver street, from east house line of St. John, west	4	145
Orianna street, from 28 feet north of north house line of Cumberland, north.	4	25
Trenton avenue, southeast side, from 310 feet southwest of southwest house line of Dauphin, northeast.	4	257
Vienna street, from Beach to east house line of Richmond.	4	261
Tot		1,088
Fire hydrant connections cut off and	4	611
Fire hydrant connections cut off and abandoned.	6	46

Recapitulation of Third District.

Purposes for which used.

Fuurth District.

Comprising the Thirteenth, Fourteenth, Fifteenth, Twentieth, Twenty-ninth,
i'hirty-second, and part of the Twenty-eighth Ward.

Street. Location.	Size in inchea.	Dista
Service Mains. Allegheny avenue, south side, from Germantown avenue to dead end east house line of Broad.. \qquad		
	6	1,297
Allegheny avenue, south side, from dead end west house line of Broad, west to connect dead end laid in 1890...		
Allegheny avenue, south side, from dead end east house line of Little Park street to Twenty-recond.		
Allegheny avenue, north side, from dead end east house line of Twentieth, west..	6	433
Allegheny avenue, north side, from 458 feet west of west house line of Twentieth to 2 feet east of west house line of Twenty second.		
Arizona street, from 240 feet east of east house line of Thirty-first to Thirty-second..		
Berks street. from east house line of Thirty-third, west..... Bishop street, from 19 feet west of east house line of Thirteenth, west to connect dead end.		
	6	
Bouvier street, from York to f feet 3 inches north of south house line of Cumberland..	6	531
Camac street, from south house line of Allegheny avenue, north.	6	
Carlisle street, from Clearfield to Allegheny avenue......... Clarence street, from east house line of Twenty-second to Twenty-fourth.		
	6	
Clarence street, from 336 feet east of east house line of Twenty-ix th , west.	6	360
Clarion street, from centre of York street north to connect dead end..	6	
Clearfield street, from west curb line of Thirteenth to dead end east house line of Broad.	6	559
Clearfield street, from 1 foot east of east bouse line of Twenty-seventh to deald end, 311 feet 6 inches west of centre of Thirty-first..	6	2,11
Clifford street, from dead end east curb line of Thirty-first, northeast.	6	358
Coffman street, from 19 feet west of east house line of Thirteenth, west to connect dead end..	6	
Coffman street, from Park avenue, west. Colorado street. from York to : 3 feet north of south house line of cumberland	6	
	6	540
Cumberland street, from Sedgeley avenue, west............... Dauphin street, from dead end east house line of Nineteenth, west to connect.	6	

Street. Location.	Size in inches.	Distance in feet.
Service Maino-Continued.		
Lehigh avenue, south side, from 37 feet east of centre of Twenty-second, west.	6	74
Lehigh avenue, north side, from 35 feet east of centre of Twenty-second, west.	6	65
Lohigh avenue, north side,'from 13 feet east of east house line of Twenty-sixth to west house line of Twentyseventh. \qquad	6	513
Logan avenue, from dead end east house line of Park avenue, west.	-	30
Maple street, from Firth to Huntingdon..................	6	393
Marston street, from dead end 3 feet 6 inches north of north house line of Montgomery avenue to dead end south house line of Berks.	6	498
Mundell street, from Fifteenth to Sixteent	6	498
Newkirk street, from Master to Jefferson.	6	503
Newkirk street, from Columbia avenue to 3 feet north of south line of Montgomery avenue.	6	546
Newkirk street, from York to 13 feet north of south house line of Cumberland.	6	538
Nineteenth street, from north house line of Dauphin, north.	6	460
Nineteenth street, from south to north house line of York..	6	52
Norris street, from east house line of Thirty-second, west..	6	21
Oakdale street, from Fifteenth to Sixteenth.....................	6	448
Opal street, from dead end north house line of Dauphin to York	6	528
Oxford street, from east house line of Thirty-third, west....	6	20
Page street, from centre of Thirty-first, west..	6	25
Park avenue, from south house line of York, north.	6	39
Park avenue, from 3 feet south of north house line of Coffiman to Cambria \qquad	6	693
Park avenue, from Clearfield to south curb line of Allegheny avenue.	-	560
Philadelphia street, from Cumberland to Huntingdon..	6	552
Richfield street, from Thirteenth to Park avenue.	6	364
Sedgely avenue. from 71 feet southwest of centre of Tweny-second, northeast	8	109
Sergeant street, from 12 feet east of west house line of Fifteenth to l'hiladelphia..	6	207
Seventeenth street, trom 226 feet north of north house line of Huntingdon, north	6	174
Showaker street, from dead end east house line of Twentyeighth, west.	6	37
Sixteenth street, from Oakdale, north.......................	6	15
Sixteenth street, from south house line of Pearl, north......	6	16
Sixteenth street. from 13 feet south of centre of Huntingdon, north	6	38
Somerset street, from 5 feet east of east house line of Twenty-second, west..... ...	6	61

Location.	Size in inches,	Distance in feet.
Service Mains-Continued.		
Susquehanna avenue, from east house line of Thirty-second, west.	6	0
Sydenham street, from 12 feet south of north house line of Lehigh avenue to Mundell.	6	284
Thirteenth street, east side, from Susquehanna avenue to connect dead end.	6	262
Thirteenth street, from south house line of York, north	6	28
Thirteenth street, from Lehigh avenue to Somerset......	6	565
Thirteenth street, from south house line of Allegheny avenue, north.	6	28
Thirtieth street, west side, from 30 -inch main in Master street, north.	12	19
Thirtieth street, from south house line of Columbia avenue, north...	6	49
Thirtieth street. east side. from 12 feet north of south house line of Cleartield, north.	6	38
Thirtieth street west side, from 12 feet north of south house line of Clearfield, north.	6	38
Thirty-first street, from 30 -inch main in Master,	10	28
Thirty-first street, from north house line of Norris to dead end 23 feet south of southwest house line of Ridge avenue. \qquad	6	815
Thirty-first street, from Herman to York	6	286
Thirty-first street, from 13 feet s uth of centre of Clearfield, north.	6	38
Thirty-second street, from south house line of Thomazine to dead end south house line of Columbia avenue......	6	266
Thirty-second street, from 3 feet south of north house line of Diamond to north house line of Susquehana avenue. \qquad	6	577
Thirty-second street, from Herman to York	6	272
Thirty-third street, east side, from south house line of Uxford to north house line of Montgomery ave.	12	1,143
Thirty-third street, east side, from south house line of Berks, noth.	12	50
Thirty-third street, east side, from south house line of Norris, north.	6	51
Thomas avenue, from 13 feet south of centre of Huntingdon, north.	6	26
Thomazine street. from 13 feet 3 inches east of centre of Thirty-second to Thirty-third.	6	517
Twenty-eighth street, from 45 feet south of south house line of Showaker to 13 feet north of south house line of Lehigh avenue. \qquad	6	205
Twenty eighth street, from 13 feet south of centre of Cleartield north \qquad	6	26
Twenty-first street, from dead end north house line of Dauphin to York.	6	528

Street. Location.	Size in inches.	Distance in feet.
Service Mains-Continued.		
Twenty-first street, from south house line of Allegheny avenue, north.	6	91
Twenty-fourth street, from dead end 186 feet south of south house line of York, north.	6	453
Twenty-fourth street, from south house line of Hunting. don, north.	6	49
Twenty-fourth street, from south to north house line of Harold	6	48
Twenty-fitth street, from 13 feet south of centre of Harold, north	6	26
Twenty-ninth street, from south house line of Clearfield, north	6	50
Twenty-second street, from York to dead end south house line of Huntingdon.	6	1,077
Twenty-second street, from dead end 6 feet south of south house line of Lehigh avenue to 300 feet north of north house line of Somerset. \qquad	6	968
Twenty-seventh street, from dead end of north house line of Sedgeley avenue.	6	263
Twenty-seventh street, from 50 feet south of south house line of Lehigh avenue, north	6	36
Twenty-seventh street, from 13 feet south of centre of Clearfield, north	6	26
Uber street, from north house line of Susquehanna avenue to dead end 2 feet north of south house line of Dauphin.	6	530
Van Pelt street, from Dauphin to York.	6	556
Weatmont street, from Thirty-first to Thirty-second.........	6	450
Whitehall street, from dead end 6 feet east of centre of Thirteenth, west to connect.	6	6
Willington street, from dead end south house line of Montgomery avenue, north.	6	26
Willington street, from 13 feet south of centre of Huntingdon, north	6	26
York street, from Thirteenth to 8 feet west of east house line of Broad	12	560
York street, from dead end west house line of Thirtieth to Thirty second	6	876
Total		39,521

Street. Locatiou.	Size in inches.	Distance in feet.
Supply Main. Supply main, from East Park Reservoir to Twenty-fifth and Spring Gurden streets.		
Twenty-fifth street, from Spring Garden street to dead end laid 1887, 47 feet 2 inches south of south curb line of Green street; thence through Fairmount Park, from dead end laid 1887 on Twenty-tifth street, 2 feet inches south of north house line of Green street; to west side of Twenty-fifth street, 85 feet north of north house line of Green street; to west side of Twentysixth street, 37 feet south of south house line of Fairmount avenue; to north side of Brown street, 152 feet west of west house line of Twenty-ninth street; to south side of Girard avenue, 175 feet west of west side of Pennsylvania avenue; thence to 42 feet west of main track of Philadelphia and Reading Railroad on Pennsylvania avenue and the centre of Thirty-second street ; thence along southwest side of Pennsylvania avenue to 44 feet west of west house line of Thirtythird street, south side of Reading Railroad; thence to dead end laid 1889, 231 feet west of east house line of Thirty-third street, New York Division of Pennsylvania Railroad; thence on Thirty-third street, from dead end laid 1890, 314 feet 6 inches north of north house line of Columbia avenue to East Park Reser- voir...	48	6,709
Supply Main, from Twenty-serventh and Thompson streets to Twenty-ninth and York streets. Twenty-seventh street, from Thompson to Ridge avenue; thence on Ridge avenue from Twenty-seventh street to Twenty-ninth street: thence on Twenty-ninth from Ridge avenue to York.	36	6,300
Supply Main, from Broad and Norris streel to Twenty-seventh street and Montgomery avenue. Norris street, south side, from Broad to Eighteenth ; thence on Eighteenth, east side, from Norris to Berks; thence on Berks, north side, from Eighteenth to Twentythird; thence on Twenty-third, east side, from Berks to Montgomery avenue; thence on Montgomery avenue, south side, from Twenty-third to Twentyseventh.	20	7,008

Street. Location.	Size in inches.	Distance in feet.
Supply Main, between Montgomery arenue and Norris street Stop House, East Park Reservoir.		
Thirty-third street, from 46 feet 4 inches north of north house line of Montgomery avenue, north (a continuation of Poplar street 48 -inch main). \qquad	48	42
Total		20,059
Serivice Main Connections.		
Tenth and Brown streets, between 6 -inch main on Tenth and 8 -inch main on Brown.	6	15
Thirteenth and Brown streets, between 6 -inch main on Thirteenth and 6 -inch main on Brown. \qquad	6	13
Thirtieth and Master streets, between 12 -inch main on Thirtieth and 6 -inch main on Master. \qquad	10	20
Thirty-third street and Montgomery avenue, between 12inch main on Thirty-third and \mathfrak{f}-inch main on Montgomery avenue. \qquad	6 12	4 5
Twenty-fifth street, from south house line of Jefferson, between 12-inch and 6 -inch mains on Twenty-fifth......	12	5
Total		62
Supply Main Connection.		
Berks street, west house line of Eighteenth, between 20 and 6 -inch mains on Berks.	6	9
Berks and Nineteenth streets, between 20 -inch main on B rks street and 6-inch main on Nineteenth...	6	10
Berks and 'Twentieth streets. between 20 -inch main on Berks and 6 -inch main on 'Twentieth..	6	11
Berks and Twenty-first streets, between 20 -inch main on Berks and 6-inch main on Twenty-first	6	11
Berks and Twenty-second streets. between 20 -is ch main on Berks and 6 -inch main on Twenty-second	6	10
Broad and Wood streets, hetween 20 -inch main on Broad and 4-inch main on Wood	10	11
Eighteenth street, south honse line of Norris, between 20 and 6 -inch mains on Eighteenth.	6	6
Montgomery avenue and Twenty-third street, between 20 inch main on Montgomery avenue and 6 -inch main on Twenty-third	6	11
Montgomery avenue and Twenty-fourth street, between 20 -inch main on Montgomery avenue and 6 -inch main on Twenty-fourth.	6	11

Strect. Location.	8ize in inches.	Distance in feet.
S'upply Main Connections-Continued.		
Montgomery arenue and Twenty-tifth street, between 20inch main un Montgomery avenue and 10 -inch main (n Twenty-fifth \qquad	10	13
Montgomery avenue and Twenty-sixth street, between 20 -inch main on Montgomery avenue and 6 -inch main on Twenty-sixth	6	16
Norris street, east house line of Fifteenth, between 20 and 6 -inch mains on Norris.	6	7
Norris street, west house line of Sixteenth, between 20 and 6 -inch mains on Norris.	6	7
Norris street, 10 feet 9 inches west of west house line of Seventeenth, between 20 and 6 -inch mains on Norris..	6	8
Ridge arenue, 48 feet north west of northwest house line of Glenwood, between 36 and 12 -inch mains on Ridge avenue	12	19
Thirty-second and Thompson streets, between 10 -inch main on Thirty-second and 6 and 8 -inch mains on Thompson	10	19
Thirty-third street and Montgomery avenne, between Stop House, East lark Reservoir and 48 -inch main to Twentr-fifth and Spring Garden.	36	102
Thirty-third street and Montgomery avenue, between 48 inch main to Twenty-fifth and Spring Garden streets and 48 inch main on Montgomery avenue.................	48	51
Thirty-third street, 84 feet 6 inches north of north house line of Montgomery avenue, between 48 -inch main to connect with Poplar street and 48 -inch main to Twenty-fith and Spring (iarden.	48	12
Twenty-ninth street, 19 feet northeast of northeast house line of hidge avenue, between 36 and 6 -inch mains on Twentr-ninth	10	15
Twenty-ninth street north house line of Diamond, between 36 and 6 inch mains on Twenty-ninth.	6	7
Twenty-ninth street, north honse line of Sinspuehanna avenue, between 36 and 6 -inch mains on Twenty-ninth	10	11
Twenty-ninth street, 2 feet 6 inches north of north house line of Dauphin, between 36 and 6 -inch mains on Twenty ninth	10	10
Twenty-seventh and Master streets, between 36 -inch main on Twenty-seventh and 36 -inch main on Master	36	15)
Twenty-seventh and Jefierion streets, between 36 -inch main on Twenty-seventh and 30-inch main in Jefferwon	30	46
Twenty-serenth street, north house line of Oxford, between 36 and i-inch mains on Twenty-seventh.	10	8
Twentyseventh street, 3 feet south of north house line of Columbia avenue, between 36 and 6 -inch mains on Twenty-seventh.	10	9
Twenty seventh street. 4 feet north of north hrouse line of Montgomery arenue, between 36 and 6 -inch mains on Twenty-seventh	10	6

Street. Location.	Size in inches.	Distance in teet.
Service Main Connections-Continued.		
Twenty-seventh street, north house line of Berks, between 36 and 6 -inch mains on Twenty-seventh.	10	8
Twenty-third strect, 4 feet 6 inches south of south house line of Berks, between 20 and 6 -inch mains on Tweuty third \qquad	6	9
Total		488
Fire hydrant connection...........................	6	1,699
Firc Connections (Private).		
Nineteenth street, east side, 32 feet 6 inches south of south of south house line of Buttonwood, for Laird, Schober and Mitchell \qquad	$\begin{array}{r} 6 \\ 10 \end{array}$	6 2
Total		8
Supply Connections (Private).		
Thirty fecond street, east side, 102 feet 6 inches south of north house line of Master, for Bergner and Engle....	6	14
Drains.		
Berks street, intersection of Twentieth, from supply main connection	6	2
Berks street, 2 feet east of east house line of Twentieth, from 20 -inch main.	6	6
Eighteenth street, south house line of Norris, from supply main connection.	6	16
Fairmount Pumping Station, south side, to drain grounds..	6	66
Ridge avenue bridge over Pennsylvania Railroad, southeast side, 61 feet northwest of northwest house line of Connecticut avenue. \qquad	10	23
	30	26
Southeast side under road-bed, 4 feet 5 inches northwest of southeast pier.	20	3
east of northwest pier	20	3
Northwest side, 212 feet southeast of southeast house line of Sedgely avenue.	30	27

8treet. - Location.	Size in inches.	Sistance in feet.
Drains-Continued.		
Spring Garden street, north side, east house line of Twentyfifth, from 48 -inch main	6	19
Spring Garden Pumping Station, south side, from new boiler house.	6	12
Spring Garden Pumping Station, south side, from inlet..... Spring Garden Pumping Station, north side, 117 feet west of west house line of Thirty-third street, from inlet...	6	31 11
Twenty-fifth street, 42 feet south of north house line of Spring Garden, from 48 -inch main..	6 12	8
Twenty-fifth street, 10 feet north of north house line of Fairmount avenue, from 6 -inch main.	6	15
Thirty-first street, 18 feet 6 inches south of north house line of Master, from 10 -inch main	6	10
Twenty-ninth street intersection of Susquehanna avenue, from 36 -inch main.	6	6
Twenty-seventh street, 212 feet south of south house line of Columbia avenue, from 36 -inch main.	6	3
Total		296
Pipe Relaid.		
Canton street, from Callowhill to Buttonwood.................	6	784
Columbia avenue, south side, from Eighth to 18 feet 2 inches west of east house line of Ninth	6	278
Columbia avenue, south side, from 7 feet east of west house line of Ninth, west.	6	114
Columbia avenue, north side, from Eighth to 112 feet 6 inches west of west house line of Ninth....................	6	432
Columbia avenue, south side, from Twenty-eighth to Thirtieth.	6	920
Columbia avenue, north side, from Twenty-eighth to Thirtieth	6	923
Darien street, from 26 feet south of north house line of Brown, north	6	26
Hamilton street, from centre of Canton, west.	6	21
Hutchinson street, from centre of Master, north...............	6	466
Indiana avenue, intersection of Broad, between 6 and 10 inch mains.	10	12
Meredith street, from Twenty-fourth to Twenty-fifth	6	460
Mervine street, from Columbia avenue to Montgomery avenue. \qquad	10	567
Montgomery avenue, from Mervine to Twelfth................	10	22:3
Montgomery avenue, from east house line of Thirty-third, west	6	18
Newkirk street. from 20 feet north of south house line of Columbia avenne, north.	6	7

Street. I.ocation.	Size in inches.	Distance in feet.
Pipe Relaid-Continued.		
Noble street, from centre of Canton, west.	6	20
Sydenham street, from Oxford to Columbia avenue.	6	533
Thomazine street, from east house line of Thirty-third, west.	6	19
Thirty-ninth street, from south house line of Columbia avenue, north.	6	62
Total.		5,885
Fire hydrant connections relaid..................................	6	219
Repairs, general.	4	17
" ${ }^{\text {u }}$	6	958
"	8	192
" "	10	118
" "	12	48
" "	20	12
" "	30	36
" "	36	15
" "	48	16
Total..		1,412
Pipe Taken Up.		
Canton street, from Callowhill to Buttonwood.................	3	784
Darien street, from 26 feet south of north house line of Brown, north	6	25
Hamilton street, from centre of Canton, west..................	4	21
Hollingsworth strect, from west house line of Thirty-first to 17 feet west of east house line of Thirty-second......	6	409
Hutchinson street, from Master, north.	4	466
Meredith street, from Twenty-fourth to Twenty-fifth.........	4	460
Mervine street, from Columbia avenue to Montgomery avenue.	6	567
Montgomery avenue, from Mervine to Twelfth..	6	223
Montgomery avenue, from east house line of Thirty-third, west.	6	18
Newkirk street, from 20 feet south of north house line of Columbia avenue, north.	4	7
Noble street, from centre of Canton, west......................	4	20
Sydenham street, from Oxford to Columbia avenue...........	4	593
Thomazine street, from east house line of Thirty-third, west	6	19
York stre et, from 13 feet 6 inches east of east house line of Broad, west..	6	10
Total		3,623

Street. Locatiou.	Size in inches.	Distance in feet.
Fire hydrant connections taken up..	46	198
Total.		202
Pipe Lowered.		
Broad street, east side, from 141 feet north of north house line of Cambria to Indiana. Fairmount avenue from centre of Sixteenth, west.	10	408
		18
Fairmount avenue. from centre of Sixteenth, west................... Thirty-third street, west side, between Thomazine and Columbia avenue.	3	180
Thompson street, from 41 feet 6 inches east of east house line of Twenty-seventh, west.	18	160
Twenty second street, from 162 feet south of south house line of Lehigh avenue, north.	6	156
Total.		922
Pipe Raised.		
Biddle and Twenty-fifth streets, across tunnel of Baltimore and Ohio Railroad.. Sixteenth street, intersection of Fairmount avenue..	6 6	24
Total		40
Pipe Cut Off and Abandoned.		
Columbia avenue, from Twenty-eighth to Thirtieth Thirty-third street, west side, from Columbia avenue to Berks.	6	920
	3	1,250
Thomazine street, from east curb line of Thirty-third, west.	6	56
Twenty-ninth street, from south house line of Columbia avenue, north.	6	62
Tota		2,288
Fire hydrant connections cut off and abandoned..	4	895
Total.		520

Recapitulation of Fourth Distriot.

Purposes for which used.	Size-Inches.											Total in feet and pounds.
	3	4	6	8	10	12	18	20	30	36	48	
rif Service mains........................			37,561	109	28	1,823						39,521
\% Supply mains.........................								7,008	6,300	6,751	20,059
'8) Supply main connections............			132	..	110	10	...		46	117	63	62 488
$\stackrel{\rightharpoonup}{\otimes}$ ¢ Fire hydrant connections.........			1,699									1,699
			6		2	8
\% Drains..................................			210		23	4		6	53			14 296
Total.. $\{$ Feet....................			39,655	109	183	1,856		7,014	99	6,417	6,814	62,147
द Total... $\{$ Pounds...................			1,308,615	4,578	10,065	138,632		1,115,226	32,868	2,707,974	3,986,190	9,299,148
			5,302		802							6,104
		17	958	192	118	48	-	12	36	15	16	1,412
	180		1,276 156		18	408	160				3,825 922
			40									40
	964	1,782	7,732	192	938	456	160	12	36	15	16	12,303
	14,460	33,858	255,156	8,064	51,590	32,832	22,400	1,908	11,952	6,330	9,360	447,910
Total handled... $\left\{\begin{array}{l}\text { Feet. } \\ \text { Pounds..... }\end{array}\right.$	964	1,782	47,387	301	1,121	2,312	160	7,026	135		6,830	74,450
	14,460	33,858	1,563,771	12,642	61,655	166,464	22,400	1,117,134	44,820	$2,714,304$	3,995, ${ }^{\text {\% }} 0$	9,747,058
Pipe cut off and abandoned...	1,250	395	1,163								2,808

Fifth District.
Comprising the Twenty-first and part of the Twenty-eighth Wards.

Street. Location.	Size in	Diatance in feat.
Service Mains.		
Adams court, from 101 feet southeast of southeast house		
Cedar street, from 16 feet southwest of centre of Tower, northeast.		
Charles street, from dead ond, 196 feet northeast of north-		
Centre street, from 127 feet 6 inches southwest of southwest house line of Clay, northeast to dead end..		
Clay street, from southwest house line of Centre, northwest		
Cotton street, from 15 fect south west of centre of Manayunk		
Grape street, from 15 feet southwest of centre of Manayunk avenue, northeast..	6	15
Gerhart street, from 21 feet southwest of northeast house		21
Houghton avenue, from southeast to northwest house line		
James avenue, from dead end 299 feet northeast of northeast house line of Houghton avenue to southwest curb		
Jefferson street, from dead end southwest curb line of Wood, northeast.		
Leverington avenue, from dead end 309 feet northeast of northeast house line of selig to $6:$ feet northeast of southwest carb line of Jeannette................................		
Levering street, from southwest house line of Manayunk avenue, northeast.		
Manayunk avenue. from dead end northwest house line of Kalos to northwest house line of Osborne.................		
Manayunk avenue, from southeast house line of Ridge avenue, northwest \qquad		
Manayunk avenue, from Penn to dead end 10 feet northwest of Levering..$\begin{array}{l:l} 10 & 1,169 \end{array}$		
Mitchell street, from sontheast house line of Roxborough avenue, northwest.		
Osborne street, from Ridge avenue, northeast...................		
Penn street, from dead end 11 feet southwest of southwest house line of Tower, northeast..		
Penn street, from sonthwest house line of Manayunk avenue, northeast.		
Penn street, from centre of Terrace, n rtheast... Pechin street, from centre of Roxborough avenue, northwest \qquad	6	25

Street. Location.	Size in inches.	Distance in feet.
Service Mains-Continued.		
Port Royal avenue, 10 feet southwest of southwest house line of Ann, northeast to dead end.	6	600
Ridge avenue, from dead end 26 feet northwest of northwest house line of Gerhart to Monastery avenue.........	6	386
Roxborough avenue, from centre of Mitchell, northeast...	12	25
Rector street, from southwest to northeast curb line of Manayunk avenue..	6	26
Rector street, from 20 feet southwest of Ridge avenue, northeast..	6	20
Rector street, from southwest house line of Terrace, northeast \qquad	6	25
Rittenhouse street, from 19 feet southwest of northeast house line of Ridge avenue, northeast.	6	19
Selig street, from southeast house line of Leverington to northwest house line of Jefferson..	6	578
Tower street, from dead end 175 feet northwest of centre of Cedar to Penn.	6	185
Tibben street, from Fleeson to 7 feet 6 inches northwest of southeast house line of Prospect.	6	233
Terrace street, from dead end 171 feet north west of northwest house line of Grape, northwest \qquad	6	24
Terrace street, from Shur's lane northwest to dead end	6	352
Terrace street, from southeast house line of Penn to Lofty..	6	471
Thirty-fifth street, from Lower New Queen to 45 feet northwest of northwest house line of Upper New Queen \qquad	6	213
Webster street, from dead end northwest house line of Centre to 12 feet 6 inches northwest of southeast house		
line of Church	6	239
Wendover street, from 300 feet 6 inches southwest of southwest house line of Manayunk avenue, northeast...	6	326
Wood street, from Jefferson to 209 feet northwest of Gates	6	662
Total.		7,792
Supply Main Connections.		
Ridge avenue, 419 feet southeast of Wissahickon avenue drive, between 6 and 12 -inch mains.	6	58
	12	24
	10	20
Ridge avenue, 435 feet northwest of Scott's lane, between 12 -inch main on Ridge avenue and 4 -inch connection to Dobson's mill	4	28
Ridge avenue, 195 feet southeast of Crawford, between 12-inch main on Ridge avenue and 4 -inch connection to Dobson's mill.	4	31

Street. Location.	Size in iuches.	Distance in feet.
Supply Muin Connections-Continued.		
Roxborough Reservoir (new), southwest bank, 192 fee ${ }^{t}$ southeast of southeast house house line of Port Royal avenue.	36	110
Roxborough Reservoir (new), southwest bank, 336 feet southeast of southeast house line of Port Royal avenue	36	110
Roxborough Reservoir (new), southwest bank, 624 feet southeast of southeast house line of Port Royal avenue.	36	110
Roxborough Reservoir (new), southwest bank, 768 feet southeast of southeast house line of Port Royal avenue. \qquad	36	110
Roxborough Reservoir (new), in division bank, 621 feet, northeast of northeast house line of Ann street between southeast and northwest sections..	36	73
Total.		674
Fire hydrant connections.	6	269
Drains.		
Roxborough Reservoir (new), south corner of southeast section.	12	146
Roxborough Reservoir (new), west corner of northwest section.	12	176
Total.	\cdots	322
Fire hydrant connections relaid.................................	6	63
Repairs, general.	4	37
"، "،	${ }^{6}$	91
، " ..	12	14
". " ..	20	14
	30	14
Total.		172
Pipe Taken Up. Cresson street, from southeast house line of Warner to Shur's lane \qquad	6	172

Street. Location.	Size in inches.	Distance in feet.
Fire hydrant connections taken up...	4	42
Pipe Lowered.		
James avenue, from 100 feet northeast of northeast house line of Houghton avenue, northeast.	6	150
Ridge avenue, from 72 feet southeast of centre of Charles, northwest.	10	72
Ridge avenue, from 665 feet southeast of northwest house line of Rittenhouse, northwest.	6	665
Ridge avenue, from 369 feet southeast of southeast house line of Shur's lane, northwest.	10	140
Ridge avenue, from 229 feet southeast of southeast house line of Shur's lane, northwest. Ridge avenue, from centre of Shur's lane, northwest...	12	191
Ridge avane, fom conte of Shurs lane, nothwest.........	12	72
Ridge avenue, from northwest house line of Roxborough avenue, northwest.	6	216
Total.		1,512
Pipe Raised.		
Centre street, from 9 feet northeast of northeast house line of High street, northeast.	6	60
Fire hydrant connections cut off and abandoned.	6	12

Recapitulation of Fifth listriet.

Sixth District.

Comprising the Twenty-second and part of the Twenty-eighth and Thirty-third Wards.

Location.	Size in inches.	Distance in feet.
Service Mains.		
Apsley	6	718
Boyer street, from dead end 235 feet southeast of southeast house line of Gowen avenue, northwest.	6	71
Bristol street, from east to west house line of Broad	6	3
Broad street, west side, trom south house line of Juniata to 25 feet north of south house line of Cayuga...........	12	1,175
Brunner street, from 240 feet southwest of southwest house line of Wayne, northeast.	6	240
Camac street, from south house line of Louden to Rockland	6	5
Carlisle street, from Tiog	6	22
Carpenter street, from 28 feet south west of northeast house line of Wissahickon, northeast.	6	9
Carpenter street, from southwest house line of Wayne to dead end 68 feet northeast of Sherman..	6	921
Cayuga street, from northeast house line of Clarissa to Germantown avenue	6	953
Cedar lane, from southeast house line of Walnut lane, northwest...	6	0
Chew street, from Mount l'leasant to Mount Airy avenue...	12	9
Chew street, from Dorsett to Ru	12	250
Coulter street, from is feet northeast of southwest house line of Wissahickon avenue, northeast.	6	49
Cresheim road, from southeast house line of Mount Pleasant avenue, northwest...	6	0
Darwin street, from east house line of Sixteenth. west	6	25
Dennie street, from northeast house line of Clarisea to (iermantown avenue...	6	987
Dorsett street, from Chew to Boyer	6	3
Durham street, from 40 feet southwest of northeast house line of Chew, northeast to connect dead end..............	6	
Ellet street, from 28 feet southwest of northeast house line of Wissahickon, northeast.	6	9
Emlen street, from Johnson to dead end southeast house line of U_{p};il	6	748
Franklin street. tom $2 S$ feet southwest of northeast house line of Wisrahickon avenue, northeast.....................	6	9
Good street. from 66 ix feet southwest of southwest house line of (iermantown avenue, northeast.	6	715
Green street, fiom dead end northwest house line of Washington lane t southeast house line of Johnson...	6	850
Hancock street, from dead end northwest house line of Pastorins to Washngeton.	6	651
Hansberry street, from southwest house line of Wis ahickon avenue, northeast.	6	50

Street. Location.	Size in inches.	Distance in feet.
Service Mains-Continued.		
Hansberry street, from southwest house line of Morris, northeast..	6	25
Henry street, from southeast house line of Seymour, northwest \qquad	6	25
Itchner street, from 182 feet east of east house line of Nineteenth, west.	6	207
Jefferson street, from Johnson to dead end southeast house line of Upsal	6	749
Johnson street, Irom 28 feet southwest of northeast house line of Wissahickon avenue, northeast.	6	9
Juniata street, from east to west house line of Broad......	6	113
Knox street, from southeast house line of Seymour, northwest \qquad	6	25
Kenderton street, from dead end 1 foot north of south house line of Venango, north.	6	24
Little Wayne street, from 296 feet southeast of southeast house line of Lehman, northwest to dead end.	6	296
Linco'n drive, from 28 feet southwest of northeast house line of Wissahickon avenue, northeast.	6	10
Logan street, from 75 feet southeast of northwest house line of Hunting Park avenue to northwest house line of Ruffiner	6	411
Louden street, from east to west house line of Camac	6	50
Mill street, from s uthwest honse line of Chew to Bloy	6	417
Morris street, from Lehman to Rittenhouse..	6	304
Morris street, from southeast to dead end northwest house line of Winona.	6	50
Mower street (Lower), from southeast bouse line of Mount Pleasant. northwest.	6	25
Mower street (Cpper), from $2 . i$ feet southeast of northwest house line of Mount Pleasant, northwest.	6	25
Momit Airy avenue, from 28 feet southwest of northeast house line of Wissahick on avenne, northeast.	6	9
Mount Airy avenue, from (iermantown avenue to Chew...	12	388
Mount Pleasant avenue, from 28 feet southwest of northtast house line of Wissahickon avenue, northeast.......	6	9
Musgrove street, from Horter to Plersant.......................	6	1,092
Musgrove street, from southeast house line of Walnut lane, n rthwest \qquad	6	60
Naomi strect, from 33 feet southwest of nurtheast house line of Wissahickon, northeast.	6	11
Nash street, from stutheast house line of High street, northwest.	6	242
Newhold treet, from 490 feet southeast of southeast house line of Ruseomb, northwest to dead end.	6	192
Newcombstreet, from northeast house line of Clarissa to W:ayn	6	430
Newhali street, from Manleion to Mansberry..	- 6	667

Street. Location.	Slze in inchee.	Distance in feet.
Service Mains-Continued.		
Nice street, from 33 feet southwest of northeast house line of Wissahickon avenue, northeast.	6	11
Norton street, from southwest house line of Jefferson, northeast...	6	50
Norton stret trom 28 feet southwest of northeast house line of Wissahickon a venue, northeast	6	9
Norton street, from southwest house line of Emlen, northeast	6	25
Otto street, from 200 feet southeast of southeast house line of Spencer. northwest	6	260
Penn street, southeast side, from southwest house line of Wissahickon, northeast..	6	6
Penn street, northwest side, from southwest house line of Wissahickon avenue, northeast.	6	55
Penn street, from southwest house line of Pulaski avenue, northeast.	6	60
Philellena street, from 28 feet southwest of northeast house line of Wissahickon, northeast..	6	9
Pulaski avenue, from Hansberry to Penn. Pulaski arenue, from southeast house line of Rittenhouse, northwest.	6 12	903 51
Queen street, trom 2 feet southwest of southwest house line of Wissahickon avenue, northeast.	6	11
Rittenhouse street, from Wissahickon avenue to Pulaski avenue.	6	1,532
Rockland street, from dead end northeast house line of York to northeast house line of Eleventh.	6	1,285
Ruffner street, from 25 feet southwest of northeast house line of Logan, northeast.	6	25
Sedgwick street, from dead end 306 feet southwest of southwest house line of Chew, northeast..	-	346
Seymour street, from Wayne to Knox....................... ...	6	580
Sherman street, from southeast house line of Carpenter, northwest.	6	25
Sixteenth street, from St. Mark's square to Cayuga..........	6	265
Slocum street, from southwest house line of Musgrove to Chew	6	769
Spencer street, from Stenton avenue to northeast house line of Otto	6	465
Springfield avenue, from Twenty-eighth to Thirty-first......	6	1,735
Staffiord street, from dead end 525 feet southwest of southwest house line of Morris, northeast.	6	132
Stenton avenue, from southeast house line of Willow Grove avenue, northwest to dead end.	6	12
Stenton avenue, from Chelten avenue to southeast house	6	291
Twelfth street, from Angle to north house line of Venango..	6	394
Twentieth street, from Tioga, north............................	6	23

Street. Location.	Sizes in	Distance in feet.
Service Main--Continued.		
Twenty-ninth street, from 5 feet northwest of southeast house line of Springfield avenue, northwest.....	6	40
Upsal street, from 28 feet southwest of northeast house line of Wissahickon avenue, northeast.	6	10
Veuango street, from east house line of Eleventh to west house line of Twelfth.	6	554
Venango street, from Germantown avenue to dead end 5 feet 6 inches east of east house line of Broad.	6	295
Walnut lane, from 30 feet 6 inches southwest of northeast house line of Wissahickon, northeast.	6	15
Washington lane, from 23 feet southwest of northeast house line of Wissahickon avenue, northeast.	6	11
Wayne street, from southeast to northwest house line of Carpenter.	6	0
Wayne avenue, from Dennie to Cayuga................	6	266
Weiss street, from 300 feet southeast of southeast house line of Spencer, northwest.	6	360
Westview avenue, from 28 feet southwest of northeast house line of Wissahickon avenue, northeast.	${ }_{6}^{6}$	28
Whittier street, from Apsley, north west.	6	25
Willow Grove avenue, from dead end 65 feet northeast of northeast house line of Stenton avenue to southwest house line of Ardmore...	6	1,135
Wingohocking street, from 16 feet northwest of southeast house line of Mill, northwest.	6	4
Winona avenue, from 403 feet southwest of southwest house line of Morris, northeast.	6	453
Winona a enue, from southwest house line of Pulaski avenue, northeast.	0	33
Wissahickon avenue, from 50 feet southeast of northwest house line of Rittenhouse, northwest.	6	48
Wissahickon avenue, from dead end, 387 feet northwest of northwest house line of Manheim to southeast house line of School lane.	12	2,405
Total..		31,823
Supply Mains.		
Allen's lane, from Wissahickon avenue, northeast.	20	253
Rittenhouse street, from Wissahickon avenue to Pulaski avenue	16	1,560
Wissahickon avenue, from dead end 357 feet northwest of northwest house line of Manheim to southeast house line of School lane... \qquad	12	2,405

Street. . Location.	Size in inches	Distance in feet.
Supply Mains-Continued.		
Wissahickon avenue, from southeast house line of School lane, northwest.	16	1,855
Wissahickon avenue, from 27 feet 6 inches southeast of southeast house line of Rittenhouse to Allen's lane....	20	8,773
Total..		14,846
Service Main Connections.		
Mount Airy avenue and Chew street from 35 feet northwest of southeast house line of Mount Airy avenue, southeast, between 6 and 12 inch mains on Mount Airy avenue.. \qquad	6	8
Supply Main Connections.		
Allen's lane, 228 feet northeast of northeast house line of Wissahickon avenue between 30 -inch pumping main and 20 -inch supply main on Allen's lane...................	20	10
Allen's lane, 186 feet northeast of northeast house line of Wissahickon avenue between 20 -inch pumping main and 20 -inch supply main on Allen's lane....	20	11
School lane and Wissahickon avenue, between 4 and 6 -inch mains on School lane and 16 -inch main on Wissahickon avenue. \qquad	10	21
Wissahickon avenue and Queen street, between 12 -inch main on Wissahickon avenue and 6 -inch main on Queen.	6	60
Wissahickon avenue and Lehman street, between 16 and 6 -inch mains on Wissahickon avenue..	6	5
Wissahickon avenue and Stafford road, between 16 and 6 -inch mains on Wissahick on avenue. \qquad	6	19
Wissahickon avenue and Chelten avenue, between 16 and 6 -inch mains on Wissahickon avenue. \qquad	6	11
Total......... ...		137
Pumping Main Connections.		
Mount Airy Pumping Station, between 10 -inch pumping mains and new engine.	10	56
Mount Airy Pumping station, suction pipe between 20 -inch main and new engine..	12	7
Total...		63

Streat. Location.	Size in inches.	Distance in feet.
Bye-pass Connections.		
Duval and Green streets, between 6 -inch main on Duval and 6 -inch main on Green.	6	19
Washington lane and Green street, between 6 -inch main on Washington lane and 6 -inch main on Green.	6	38
Total		57
Fire hydrant connections...........	6	1,508
Fire Connections (private).		
Pulaski avenue, southwest side, 1,040 feet northwest of northwest house line of Hunting Park avenue, for Philadelphia and Keading Railroad.........................	6	17
Drains.		
Kitchen's lane, 22 feet northeast of southwest house line of Wissahickon avenue.	6	67
Mount Airy Pumping Station, from roof of engine house...	4	50
Wissahickon avenue, southwest side, 15 feet northwest of coutheast house line of Lehman, from 16 -inch mains...	6	9
Wissahickon avenue, northeast side, 281 feet southeast of southeast house line of Queen, from 12-inch main......	6	7
Wissahickon avenue, from 146 feet northwest of Rittenhouse, southwest to creek, from 20 -inch main.	6	43
Total...........	6	176
Pipe Relaid.		
Chestnut Hill Pumping Station, from 7 feet southeast of southeast house line of engine house, northwest, to drain quarry.	,	108
Coulter street, from Wayne to Green..	61	1,029
McKean's avenue, from northwest house line of Clapier to Manheim	6	670
Mill street, from northeast house line of Cedar lane to southwest house line of Chew.	6	1,010
Mill street, from 92 feet southwest of northeast honse line of Bellfield to 90 feet northeast of Wingohocking......	6	741
Stenton avenue, from Willow Grove avenue to Abington avenue	6	510
Walnut lane, from Morton, northeast.	6	35

Street. . Location.	Sises in inches.	Distance in feot.
Pipe Relaid-Continued.		
Walnut lane, from 60 feet northeast of northeast house line of Morton to 318 feet northeast of northeast house line of Cedar lane. \qquad	6	911
Willow Grove avenue, from 42 feet southwest of northeast house line of Stenton avenue, northeast..	6	107
Total.		5,121
Fire hydrant connections relaid...................................	6	92
Repairs, general..	3	3
Repairs, general..	4	25
Repairs, general.	6	107
Repairs, general.	10	7
Repairs, general..	12	4
Repairs, general..	16	7
Repairs, general...	20	40
Total..		193
Fire hydrant connections taken up..............................	4	43
Fire hydrant connections taken up..	6	14
Total.		57
Pipe Lowered.		
Boyer street, from northwest house line of Mount Airy, northwest..	6	408
Hansberry street, from Morris to 110 feet northeast of northeast house line of Pulaski avenue.	6	657
Morris street, from 200 feet southeast of southeast house line of Hansberry, northwest.	6	470
Mount Pleasant avenue, from northeast house line of Mower, northeast.	6	168
Mount Pleasant avenue. from 320 feet southwest of southwest house line of Cresheim road, northeast.	6	320
Total...	-	2,023

Street. Location.	Size in inchee.	Distance in feet.
Pipe Cut Off and Abandoned.		
Coulter street, from Wayne to Green............................	4	1,042
McKean's avenue, from northwest house line of Clapier to		
Manheim ..	2	670
Mill street, from Cedar lane to Chew....	3	1,025
Mill street, from 92 feet southwest of northeast house line of Bellfield, to 90 feet northeast of northeast house line of Wingohocking.	4	741
Stenton avenue, from Willow Grove avenue to Abingdon avenue.		510
Walnut lane, from Morton, northeast............................	3	35
Walnut lane, from 60 feet northeast of northeast house line of Morton to 66 feet northeast of northeast house line of Cedar lane.	3	659
Walnut lane. from 66 feet northeast of northeast house line of Cedar lane, northeast.	4	250
Willow Grove avenue, from 42 feet southwest of northeast house line of Stenton avenue, northeast.....................	4	107
Total..		5,039
Fire hydrant connections cut oft and abandoned.	3	12
Fire hydrant connections cut off and abandoned.	4	303
Fire hydrant connections cut off and abandoned..............	6	80
Total.. ..		395

Recapitulation of Sixth District.

品

Recapitulation of Work on the Water Pipes.

Purposes for which used.	Size-Inches.													Total in feet and pounds.
	2	3	4	6	8	10	12	16	18	20	30	36	48	
				144,654	3,088	1,245	8,124							157,061
				40		20	2,405 10	4,084	18,671	10,786	9,660	6,751	52,357 70
\pm® Supply main connections. Pumping main connections...			59	296		502	145	62		57	46	630	63	1,860
¢ $\left\{\begin{array}{l}\text { Bye-pass connections........... } \\ \text { Fire-hydrant }\end{array}\right.$			57						.	.			67
\& Fire connections (private).......			31	8,545 49	.	2				….			8,545 82
$\stackrel{\sim}{\sim}$ Supply connections (private)..		122	194	- 91				407
\% ${ }_{4}^{5}$ D ${ }^{\text {d }}$ Drains..............................		15	50	343		23	326			6	53	.		33 801
Total.... $\left\{\begin{array}{l}\text { Feet } \\ \text { Pounds.......... }\end{array}\right.$	137	334	154,093	3,038	1,848	11,017	4,146		18,734	10,885	10,290	6,814	221,336
				29,100		2,280	701							32,081
		3	128	3,373	256	235	206	26		108	50	15	16	4,416
	350	6,306 180	9,534	5,407 4,966		230	671		160					21,675 6,207
				112										112
Total... $\left\{\begin{array}{l}\text { Feet................. } \\ \text { Pounds......... }\end{array}\right.$	350	6,489	9,662	43,008	256	2,773	1,578	26	$1{ }^{10} 0$	108	50	15	16	64,491
	3,500	97,385	183,578	1,419,264	10,752	152,515	113,616	2,860	22,400	17172	16,600	6,330	9,360	2,051,782
Total handled.... $\left\{\begin{array}{l}\text { Feet } \\ \text { Pounds..... }\end{array}\right.$	350	6,626	9,996	197,101	3,294	4,621	12,595	4,172	8,160	18,842	10,935	10,305	$6,830$	285,827
	3,500	99,390	189,924	6,504,333	138,348	254,155	906,840	458,920	22,400	3,995,878	3,630,420	4,348,710	$3,995,550$	23,544,868
Pipe cut off and abandoued......	670	3,193	6,407	1,488										11,758

Recapitulation by Districts.

NEW FIRE IIYDRANTS.

First District.
Street.

New Fire Bydrants-First District-Continued.

New Fire Hydrants—First District—Continued.

Street.

New Fire Hydrants-First District-Continued.

		或		¢	1			
Street. Location,	宸	$\begin{aligned} & \text { E } \\ & \stackrel{0}{0} \\ & \otimes \\ & \stackrel{N}{2} \end{aligned}$	Feet.	In.	$\dot{\dot{\infty}}$	$\begin{aligned} & \dot{+} \\ & \dot{8} \\ & \dot{Z} \end{aligned}$	si ¢ ¢	\%
Passyunk avenue, south-east side, intersection of Fifth...	4	6	25	\ldots		1	
Patton street, west side, 17 feet south of south house line of Wharton.	26	6	9	1	
Pharo street, west side, 62 feet south of south house line of Fitzwater...	30	6	8	\ldots	1		
Queen street, south side, east house line of Front................ ...	3	6	15			1	
Queen street, north side, east house line of Second	3	6	14	6			1	
Reed street, north side, 182 feet east of east house line of Sixth	1	6	14	1		
Reed street, north side, 59 feet east of east house line of Seventh.	1	6	14	1		
Sixteenth street, east side, south house line of Catharine.	30	6	15	\cdot	1	
Bnyder avenue, south side, east house line of Fourth..	1	8	10	6	1	
Snyder avenue, south side, 110 feet east of east house line of Fifth...	1	8	11		1	
Snyder avenue, north side, 85 feet east of southeast house line of Moyamensing avenue........................	1	8	11	1	
St. Alban's place, west house line of Twenty-second.................................	30	6	15	-	1	
Tasker street, north side, east house line of Eighth	1	6	14	-	1	
Tasker street, south side, west house line of Tenth	1	6	14	1	
Tasker street, south side, west house line of Twelfth	26	6	15			1	
Taylor street, north side, 56 feet west of west house line of Twenty-second	26	6	8				1	

Neno Fire Mydrants-Airat Diafrict-(Continumed.

New Fire Hydrants-First District-Continued.

		gi	$\begin{gathered} \text { 6-Inch } \\ \text { Connection. } \end{gathered}$		Stiyle.			
	完	-	Feet.	In.	$\dot{\infty}$	-	ai 0 8 4	-
Watkins street, north side, 147 feet west of west house line of Twenty-second......................................	26	6	10		1		
Webb street, east side, 72 feet south of south house line of Fitzwater..	30	6	8		1		
Winton street, north side, 344 feet west of west house line of Old Second.	1	6	8	1		
Totals...			1,252	6		31	66	

NEW FIRE HYDRANTS.

Street. Location.	等		$\begin{gathered} \text { 6-Inch } \\ \text { CONNECTION } \end{gathered}$		Style.			
			Feet.	In.	$\begin{gathered} \dot{\infty} \\ \dot{0} \end{gathered}$	-	-	¢
Barclay street, north side, 98 feet east of east house line of Eighth.	7	6	10	2			1	
Baring street, north side, 3 feet east of east house line of Thirty-second...	24	6	17	10			1	
Barker street, south side, 167 feet west of west house line of Sixteenth.	9	6	8			1		
Barker street, north side, 133 feet west of west house line of Seventeenth	9	6	8			1		
Barker street, north side, 150 feet west of west house line of Eighteenth.	9	6	8			1		
Barker street, north side, 72 feet east of east house line of Nineteenth.	9	6	8			1		
Barker street, south side, 121 feet west of west house line of Nineteenth.	9	6	8			1		
Brooklyn street, west side, south house line of Fairmount avenue.	24	6	14				1	
Brooklyn street, east side, south house line of Aspen.	24	6	14			1	
Cathedral avenue, north side, 72 feet west of west house line of Fiftieth.	34	6	11		1		
Cathedral avenue, 251 feet west of west house line of Fifty-first..	34	6	11		1		
Chester street, north side, 2 feet west of west house line of Fifty-second..	27	6	23				1	
Chester street, north side, 2 feet west of west house line of Fifty-third..	27	6	23			1	
Chestnut street, north side, 4 feet 6 inches east of east house line of Thirty-sixth..	27	8	22	2			1	
Clinton street, north side, 167 feet east of east house line of Tenth	7	6	14					

Barclay street, north side, 98 feet east of east house line of Eighth..
Baring street, north side, 3 feet east of east house line of Thirty-second..
Barker street, south side, 167 feet west of west house line of Sixteenth.
Barker street, north side, 133 feet west of west house line of Seventeent

Barker street, north side, 72 feet east of east house line of Nineteenth.
Barker street, south side, 121 feet west of west house line of Nineteenth
Brooklyn street, west side, south house line of Fairmount avenue.
Brooklyn street, east side, south house line of Aspen
Cathedral avenue, north side, 72 feet west of west house line of Fiftieth.

Chester street, north side, 2 feet west of west house line of Fifty-second.
Chester street, north side, 2 feet west of west house line of Fifty-third.

Clinton street, north side, 167 feet east of east house line of Tenth

New Fire Hydrants＿Second District—Continued．

Location．	号	$\begin{aligned} & \text { 总 } \\ & \text { 車 } \\ & \stackrel{0}{8} \\ & \frac{8}{50} \end{aligned}$	6－Inch Connection．		Etyle．			
			Feet．	In．	$\dot{\infty}$		$\begin{aligned} & \text { 内 } \\ & \dot{\circ} \\ & \dot{4} \end{aligned}$	¢
Delancey Place，south side， 154 feet east of east house line of Nineteenth．．	7	6	9			1		
Elinwood avenue，south side， 4 feet east of east line of Fifty－ninth．．	27	6	23	3			1	
Elmwood avenue，south side，east house line of Sixtieth．．	27	6	23	\cdots			1	
Fairmount avenue，north side，east house line of Union street．．．	24	6	18	4			1	
Fairmount avenue，south side， 3 feet east of northeast house line of Lancaster avenue．．．．．．．．．．．．．．．．．．．．．．．．．．．	24	6	14			．．．．．．	1	
Fifty－fifth street，east side， 1 foot south of southwest house line of Lancaster avenue．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	84	6	14			$\cdot \cdot$	1	
Fifty－fourth street，east side， 2 feet northwest of northwest house line of Chester avenue．．．．．．．．．．．．．．．．．．．．．．．	27	6	21			．．．．．．	1	
Fifty－second street，northeast side， 2 feet northwest of northwest house line of Warrington．．．．．．．．．．．．．．．．．．．．	27	30	18	2		．．．．．．	1	
Fify－second street，west side，south house line of Filbert．．	34	6	26	．．．．			1	
Fortieth street，west side，south house line of Fairmount avenue．．	24	6	18	9	\cdot		1	
Fortieth street，east side，south house line of Aspen．．．	24	6	17			．．．	1	
Forty－eighth street，northeast side，southeast house line of Warrington．．．	27	6	22	10		．．．	1	
Forty－fourth street，wost side， 2 feet north of north house line of Chestnut．．．	27	6	18			．．．	1	
Forty－second street，west side，north house line of Fairmount avenue．．	24	6	18	7	．．．．	．．．	1	
Forty－aeventh street，southwest side， 257 feet 6 inches southeast of southeast house line of Woodland ave．	27	6	20	8		．．	1	
Glenmore avenue，northwest side， 7 feet northeast of northeast house line of Hanson street．．．．．．．．．．．．．．．．．．．	27	6	8	10		1		

New Fire Hydrants—Second District—Continued．

Street．	免		$\begin{gathered} \text { 6-INCH } \\ \text { CONNECTION. } \end{gathered}$		Style．			
			薥	$\begin{aligned} & \text { © } \\ & \text {-0 } \\ & \text { 日 } \end{aligned}$	$\begin{aligned} & \infty \\ & 0 \\ & 0 \end{aligned}$	－	oi	oi
Greenway avenue，northwest side， 31 feet northeast of northeast house line of Fiftieth street．．	27	6	22			1	．．．．	
Grubb street，north side， 6 feet 6 inches east of east house line of Sycamore．	8	6	3	10			1	
Hamilton street，south side， 3 feet east of east house line of Sixty－fourth．．．	34	6	18				1	
Haverford avenue，north side，west house line of Thirty－seventh street．．．	24	20	8	5	．．．．．．	．．．．．	1	
Holly street，east side，south house line of Pennsgrove．．．	24	6	14	．．．．．．．．	．．．．．．	．．．．．	1	
Hunter＇s Lane，northwest side， 3 feet southwest of sonthwest house line of Fifty－fourth street．．．．．．．．．．．．．．．．	34	6	11	2	\ldots	．．．．．	1	
Hutton street，east side， 177 feet north of north house line of Parrish．．．	24	6	8	9	\ldots	1		
Island road，northeast side，two feet northwest house line of Paschall	27	6	12	6			1	
Lancaster avenue，northeast side，five feet southeast of southeast house line of Forty－first．．．．．．．．．．．．．．．．．．．．．	24	6	26	\cdot		．．．．．	1	
Lansdowne avenue，north side，fourteen feet east of east house line of Peach．．	34	6	18	．．．．．．．．．			1	
Locust street，north side，twelve feet west of west house line of Raspberry．．．	8	6	14	．．．．．．．．．			1	
Lombard street，north side，west house line of Twenty－third．．．	7	6	14	．．．．．．．．．			1	
Lombard street，north side，west house line of Twenty－fifth ．．	7	6	14	．．．．．．．．			1	
Mantua avenue，north side，opposite centre of Holly．	24	6	17	10			1	
Mantua avenue，south side，east house line of Forty－second．．	24	6	17	8			1	
Mantua avenue，south side，east house line of Forty－third．．．	24	6	17	9			1	

Street.	号		$\begin{gathered} \text { 6-INCH } \\ \text { CONNECTION. } \end{gathered}$		Style.			
			Feet.	In.	$\dot{\infty}$	-	¢	-
Mantua avenue, south side, three feet west of east house line of Forty-fourth....	24	6	19	2			1	
Market street, north side, thirty-one feet east of east house line of Ninth.	9	6	8	6			1	
Market street, south side, two feet six inches west of west house line of Forty-fourth	27	10	22	6			1	
North street, northwest side, thirteen feet northeast of northeast house line of Island road.	27	6	13				1	
North street, southeast side, two feet northeast of northeast side sf Lloyd.	27	6	14			1	
North street, northwest side west house line of Seventy-second or Mud lane	27	6	14				1	
Paschall avenue, southeast side, northeast house line of Forty-eighth..	27	6	22	8			1	
Paschall avenue, southeast side, northeast house line of Fiftieth.	27	6	22	8		1	
Pennsgrove street, south side, two feet west of west house line of Mantua avenue	27	6	23			1	
Pennsgrove street, south side, two feet west of west house line of Mantua avenue.	24	6	14	4	..		1	
Pine street, south side, east house line of Eighteenth.	7	6	8			1	
Pine street, north side, east house line of Nineteenth...	7	6	22				1	
Pine street, south side, east house line of Twentieth		6	7				1	
	7	6	7	6	...		1	
Pine street, south side, 1 foot 6 inches east of west house line of Twenty-second.	7	6	7	6			1	
Pine street, south side, west house line of Twenty-third.	7	6	7	6			1	
Pine street, north side, 2 feet west of west house line of Twenty-fifth	7	6	17				1	
Pine street, south side, 13 feet east of east house line of Twenty-si	7	6	17			1	

Street.

Location.

Powelton avenue, north side, east house line of Thirty-fourth..............................
Preston st reet, west side, 2 feet north of north house line of Spring Garden
Quince street, east side, north house liue of Barley
Race street, north side, west house line of Sixty-third-and-a-half.
Rockland street, northwest side, 48 feet northeast of northeast house line of Lancaster avenue.
Sansom street, north side, 6 feet west of west house line of Twenty-second
Silver street, north side, 129 feet east of east house line of Thirteenth.
Sixty-fourth street, west side, south house line of Callowhill.
Sloan street, west side, 148 feet 6 inches south of south house line of Aspen
Springfield street, southeast side, southwest house line of St. Bernard
Springfield street, northwest side, 2 feet southwest of southwest house line of Fifty-fourth.
Springfield street, northwest side, 148 feet southwest of southwest curb line of Fifty-fifth
Spruce street, north side, 2 feet west of west house line of Twenty-third.
Spruce street, north side, east house line of Twenty-fifth.
Thirtieth street, east side, south house line of Marston.
Thirtieth street, east side, north house line of Marston.
-
\qquad
\qquad
\qquad

Ward.

New Fire Hydrants-Second District-Continued.

号
27
27
24
24
34
8
9
8
8
8
9
9
24
11
14
10

	$\begin{gathered} \text { 6-INCH } \\ \text { CONNECTION. } \end{gathered}$		Style.			
	Feet.	In.	$\stackrel{\dot{\omega}}{\dot{\circ}}$	$\begin{aligned} & \text { i } \\ & \dot{\circ} \\ & \dot{z} \end{aligned}$	-	ó
6	11	\ldots	1	
6	22	1	
6	17	9	1	
6	19	1	
6	18	1		
6	14	1		
6	14	1	
6	14	1	
6	14	1	
6	14	1	
12	10	5	1	
12	7	6	...		1	
6	14	5		1	
10	14	1	
12	7	5	1	
6	11	9			1	

New Fire Hydrants-Second District-Continued.

Location.

		+					
Vine street, north side, opposite centre of St. David.	15	6	18	8			1
Walnut street, south side, 13 feet west of west house line of Eighteenth....................................	8	12	9	1
Walnut street, south silie, 67 feet east of east curb line of Nineteenth...	8	12	7	6		1
Walnut street, south side, west house line of Twenty-second...	8	6	14	1
Walnut street, north side, 2 feet east of east house line of Thirty-seventh......	27	10	24	7	1
Water street, west side, 347 feet south of south house line of Vine...	6	6	4	8	1
W yalusing street, south side, 224 feet 6 inches east of east house line of Forty-third..............................	24	6	14	-		1
Total.			1,499	0	15	87

NEW FIRE HYDRANTS—Continued.

Third District.

Street.

Location.

Abigail street, southwest side, 106 feet southeast of southeast house line of Coral.
Allegheny avenue, south side, southeast house line of Kensington avenue.
Allegheny avenue, north side, 171 feet east of east house line of Fillmore street
Allegheny avenue, north side, east house line of Fox street.
Allegheny avenue, north side, east house line of Lee street
Allegheny avenue, south side, east house line of Front street
Amber street, southeast side, northeast house line of Norris.
Amber street, southeast side, northeast house line of Ann...
American street, east side, 262 feet 9 inches south of south house line of Diamond
Ann street, northeast side, northwest house line of Belgrade.
Ann street, southwest side, northwest house line of Trenton avenue.
Ann street, southwest side, southeast house line of Amber.
Aramingo street, northeast side, northwest house line of Tulip.
Athol street, east side, south house line of Allegheny avenue.
Ball street, northeast side, northwest house line of Beach
h... \qquad

New Fire Iydrants—Third District-Continued.

Location.

Ball street, northeast side, southeast house line of Richmond
Beach street, northwest side, northeast house line of Llewelyn
Beach street, southeast side, 294 feet southwest of southwest house line of Laure
Beaver street, north side, west house line of Second
Beaver street, north side, east house line of St. John
Bermuda street, southeast side, 221 feet southwest of southwest house line of Margaretta
Birch st reet, north side, west house line of Amber. \qquad
Birch street, south side, east house line of Frankford road
Bridge street, northeast side, southeast house line of Trenton avenue
Bridge strcet, northeast side, southeast house line of Edmund \qquad
Brown street, north side, west house line of Third
Brown street, north side, west house line of Charlotte
Callowhill street, south side, 95 feet east of east house line of Fifth
Cambria street, south side, northwest house line of Emerald.
Cambria street, south side, northwest house line of Stoughton.
Cambria street, south side, west house line of Front.

$$		$\begin{gathered} \text { 6-INCH } \\ \text { CONNECTION. } \end{gathered}$		Style,			
		Feet.	In.	$\begin{aligned} & \dot{x} \\ & \dot{0} \end{aligned}$	- + 8 4	- ¢ ¢ 4	∞ 0 8 8
18	6	15	4	1	
11	10	14	6	...		1	
16	10	14	6	1		
16	6	11	4	1	
16	6	9	1	
23	6	14	6	...	1		
25	6	8	1	
25	6	8	2	1	
23	6	14	1	1	
23	6	14	4	1	
12	6	16	3		1	
12	6	15	1	
12	4	11	10	1	
25	6	18		1	
25	6	17	6	1	
33	6	14	8			1	

Street. Iocation.	辿	发	6-INCH Connection.		Style			
			Feet.	In.	$\dot{\infty}$	$\stackrel{i}{\dot{0}}$	$\begin{aligned} & \text { N } \\ & \dot{8} \\ & \text { B } \end{aligned}$	¢
Cambria street, north side, west house line of Philip...	33	6	14	9			1	
Cambria street, north side, east house line of Lawrence..................... ...	33	6	14				1	
Cemetery avenue, north side, east house line of Malvern............................	25	6	15	8		1	\cdots	
Church strect, south side, east house line of Eighth...........	19	6	9				1	
Clarion street, west side, south house line of Clearfield.. ...	25	6	9				1	
Clearfield street, north side, southeast house line of Jasper...	25	6	17	2		1	
Clearfield street, south side, east house line of Potter...	38	6	14	8		1	\ldots	
Clearfield street, north side, east house line of F...	33	6	14	4			1	
Clementine street, northeast side, northwest house line of Frankford avenue.......................................	25	6	15	10		1	
Cumberland street, northeast side, northwest house line of Richmond..................	18	6	18	9			1	
Cumberland street, southwest side, northwest house line of Salmon...	18	6	18	7	1	
Darien street, east side, south house line of Cambria..	38	6	9			1	
Dauphin street, south side, 4 feet 6 inches east of east house line of Front..	81	6	15	5	\cdots	1	
Deal street, south side, 76 feet east of east house line of Tulip...	18	6	14	6	1	
Delaware avenue, west side, 240 feet south of south house line of Laurel.....................................	16	4	22		.	1		
Dreer street, northeast side, southeast house line of Coral.	81	6	12				1	

New Fire Hydrants—Third District.-Continued.

Location.

Eighth street, east side, north house line of Somerset
Ella street, west side, south house line of Indiana avenue
Emerald street, northwest side, north house line of Allegheny avenue.
Eyre street, southwest side, 154 feet southeast of southeast house line of Belgrade
Fairhill street, east side, south house line of Clearfield.
Fairhill street, on dead end of 6 -inch pipe, 200 feet north of northwest house line of Glenwood avenue....
Fairmount avenue, north side, west house line of Second.
Fifth street, east side, south house line of Susquehanna avenue
...
Fulkrod street, southwest side, northwest house line of Oakland
Foulkrod street, northeast side, northwest house line of Horrocks
Foulkrod street, southwest side, northwest house line of Large
Foulkrod street, northeast side, northwest house line of " B "
Fourth street, west side, north house line of Poplar.
Fox street, north side, south house line of Tioga. \qquad
Frankford avenue, northwest side, 28 feet northeast of northeast house line of Ruan.

$\begin{aligned} & \text { 空 } \\ & \text { 会 } \end{aligned}$		$\begin{gathered} \text { 6-INCH } \\ \text { CONNECTION. } \end{gathered}$		Style.			
		Feet.	In.	$\dot{\infty}$	-	-	∞ ó ¢
33	6	15	1	
33	6	11	2	1	
25	6	14	10	\ldots	1	
18	6	8	4	1	
33	6	14	6	1	
33	6	1	
11	6	17			1	
19	6	18	10	\ldots	1	
23	6	15	1	
23	6	14	10	1	
23	6	14	7	1	
23	6	14	10	1	
23	6	14	8	1	
16	6	15	11	1	
33	6	11	6	1	
23	12	10	3			1	

New Fire Hydrants-Third District-Continued.

Street.

Frankford avenue, northwest side, 227 feet northeast of northeast house line of Church
Frankford avenue, southeast side, northeast house line of H arrison
Frankford street, northeast side, 348 feet southeast of southeast house line of Melrose.
Franklin street, west side, north house line of Church \qquad
Front street, west side, 131 feet north of north house line of Poplar.
Front street, east side, 215 feet south of south house line of Norris.
Front street, east side, north house line of Susquehanna avenue.
Front street, west side, northeast house line of Tusculum.
Garnet street, east side, south hcuse line of Somerset.
Geisler street, northeast side, northwest house line of Almond
Gurney street, northeast side, 124 feet northwest of northwest house line of Front
Gurney street, northeast side, opposite center of Howard.
Hancock street, east side, south house line of Indiana avenue.
Hart lane, southwest side, southeast house line of " D "
Helen street, east side, 248 feet south of south house line of Somerset
Haworth street, southwest side, northwest house line of Willow

\section*{Location.}

Street. Location.	$\begin{aligned} & \text { ed } \\ & \stackrel{y}{*} \end{aligned}$							
			Feet.	In.	$\begin{aligned} & \dot{\infty} \\ & \stackrel{0}{0} \end{aligned}$	$\dot{\circ}$ $\stackrel{\circ}{4}$	- ó ¢	-
Frankford avenue, northwest side, 227 feet northeast of northeast house line of Church........................	23	12	12	2			1	
Frankford avenue, southeast side, northeast house line of H arrison..	23	10	22	2			1	
Frankford street, northeast side, 348 feet southeast of southeast house line of Melrose..........................	23	3	32	7		1	.	
Franklin street, west side, north house line of Church..	19	6	11	5		1	
Front street, west side, 131 feet north of north house line of Poplar...	16	10	19		1		
Front street, east side, 215 feet south of south house line of Norris...	19	6	19	1	
Front street, east side, north house line of Susquehanna avenue.	31	6	19	6		1	
Front street, west side, northeast house line of Tusculum..	33	6	18	2		1	
Garnet street, east side, south hcuse line of Somerset..	25	6	14	4		1	
Geisler street, northeast side, northwest house line of Almond..	25	6	8	2		1	
Gurney street, northeast side, 124 feet northwest of northwest house line of Front................................	33	6	15	3	1	
Gurney street, northeast side, opposite center of Howard...	33	6	15	2		1	
Hancock street, east side, south house line of Indiana avenue..	33	6	14	10		...	1	
Hart lane, southwest side, southeast house line of " D "...... ..	33	4	18	4		.	1	
Helen street, east side, 248 feet south of south house line of Somerset...	25	6	8	-	.	1		
Haworth street, southwest side, northwest house line of Willow...	23	6	14	5			1	

New Fire Hydrantp-Third District—Continued.

Street. Local	豆		$\begin{gathered} \text { 6-Inch } \\ \text { CONNECTION. } \end{gathered}$		Style.			
			Feet	In.	$\dot{\infty}$	-8 4 4	ci $\stackrel{\circ}{8}$ 4	∞ $\stackrel{\circ}{8}$ ¢
Haworth street, northeast side, 190 feet northwest of northwest house line of Willow...........................	23	6	14	4	\ldots	1		
Haworth street, southwest side, southeast bouse line of Cedar..	23	6	14	3		1	
Haworth street, northeast side, southeast house line of Frank ford avenue.............	23	6	14	4	1	
Huntingdon street, northeast side, southeast house line of Sepviva..	31	6	18	.			1	
Hutchinson street, west side, south house line of Cambria...	33	6	14	8		1	
Indiana avenue, north side, west house line of Kipp	33	6	13	10	1	
Indiana avenue, south side, east house line of Fillmore...	33	6	14	10	,	1	
James street, north side, east house line of Orthodox......................................	23	6	16	9	,		1	
Jasper street, southeast side, northeast house line of Sterner...	25	6	14	8	\ldots	1		
Jasper street, northwest side, northeast house line of Hilton...	25	6	13	6	1	
Joyce street, southeast side, 104 feet northeast of northeast house line of Kettlewell.............................	25	6	9	8	-	1		
Judge street, northeast side, southeast house line of Thompson..	25	6	8	6	-	1		
Kensington avenue, southeast side, opposite centre of " C " street..	25	6	9			1	
Kensington avenue, northwest side, east house line of Boudinot...	33	6	9	4	-	1	
Kensington avenue, northwest side, east house line of " E " street...	33	6	9	5	1	
Kensington avenue, southeast side, northeast house line of Monmou	25	6		8			1	

New Fire Hydrants-Third District-Continued.

Kensington avenue, southeast side, southwest house line of Orleans.
Kensington avenue, northwest side, 294 feet southwest of southwest house line of Clearfield
Kensington avenue, northwest side, opposite southwest house line of Meighan..
Kensington avenue, northwest side, northeast house line of Adams
Laurel street, south side, 2 feet 6 inches west of west house line Delaware avenue.
Laurel street, south side, west house line of Beach. \qquad
Lawrence street, east side, north house line of Berks.
Lawrence street, east side, south house line of Susquebanna avenue.
Lehigh avenue, north side, opposite west house line of Collins..
Mascher street, west side, 76 feet south of south house line of Montgomery avenue.
Mascher street, east side, 80 feet south of south house line of Altmaier.
Mascher street, east side, south house line of Cumberland.

$\begin{aligned} & \text { 完 } \\ & \stackrel{y}{t} \end{aligned}$	$\begin{aligned} & \text { 品 } \\ & \text { an } \\ & \text { ㅇ } \\ & \text { \# } \\ & \text { © } \end{aligned}$	$\begin{gathered} \text { 6-Inch } \\ \text { ConNECTION. } \end{gathered}$		Style,			
		Feet.	In.	$\begin{aligned} & \dot{8} \\ & \stackrel{0}{2} \end{aligned}$	+		-
25	6	9	3	1	
33	6	11	3	\ldots	1	
33	6	11	7	1	
23	6	10	6	1	
16	6	9	8	\ldots	1	
16	6	8	1	
19	6	14	4	1	
19	6	15	1	
25	6	11	3	1	
19	6	14	8	1	
19	6	14	6	1
19	6	14	2	1	
11	6	4	11	\ldots	1		
33	6	11	1	
33	6	14	10	1	
19	6	14	6			1	

New Fire Hydrants—Third District—Continued．

Ontario street，north side，west house line of Second
Ontario street，south side，west house line of American
Orchard street，northwest side，sonthwest house line of Unity
Orianna street，east side，south house line of Cumberland．
Orianna street，east side，south house line of Huntingdon
Orthodox street，northeast side， 19 feet southeast of southeast house line of Gaul．
Philip street，east side，south house line of Indiana arenue
of Ontari
Philip street，west side， 139 feet south of south house line of Ontario．
Poplar street，southwest side，northwest house line of Beach．
Poplar street，northeast side，northwest house line of Beach
Poplar street，southeast side，east house line of Canal．
Poplar street，southeast side，east house line of Front
Porter＇s avenue，east side， 3 feet north of south house line of Elkhart．
Potter street，west side， 80 feet northeast of northeast house line of＂ F ＂
Richmond street，northwest side，northeast house line of Ash．．
Ruth street，east side， 123 feet 4 inches south of south house line of Cambria

$\begin{aligned} & \text { 鬲 } \\ & \end{aligned}$		$6-\mathrm{INCH}$ Connection．		Style，			
		$\begin{aligned} & \text { + } \\ & \text { 8 } \\ & \hline \end{aligned}$	$\begin{aligned} & \dot{\Phi} \\ & \text { 若 } \\ & \text { 日 } \end{aligned}$	$\begin{gathered} \infty \\ 0 \\ \hline \end{gathered}$	$\begin{aligned} & \dot{7} \\ & \dot{\circ} \\ & \ddot{4} \end{aligned}$	$\begin{aligned} & \text { ei } \\ & \dot{\circ} \\ & \dot{4} \end{aligned}$	－
33	6	15	．．．．．	．．．．	．．．．．	1	
38	6	14	4	．．．．	．．．．．	1	
23	6	12	7	．．．	．．．．．	1	
19	4	8	10	．．．．．	．．．．．	1	
19	6	9	．．．	．．．．	．．．．．	1	
25	6	17	．．．．．．		1		
33	6	9	．．．．．		．．．．．	1	
33	6	8	2		1		
11	4	14	6	．．．．．	．．．．	1	
16	4	15	．．．．．．．．．	．．．．．	．．．．．．	1	
11	4	13	6	\ldots	．．．．．	1	
11	6	10	10	．．．．．．	．	1	
25	6	9	．．．．．．．．．	．．．．．	1		
33	6	8	．．．．．．．．．		1		
18	6	15	．．．．．．．．．		．．．．．．	1	
33	4	15			1		

New Fire Hydrants—Third District.—Continued.

Street. Location.	哭		$\begin{gathered} \text { 6-INCH \| } \\ \text { CONNECTION. } \end{gathered}$		Style.			
			Feet.	In.	$\begin{aligned} & \dot{\infty} \\ & \dot{0} \end{aligned}$	-8 $\stackrel{\circ}{4}$ 8	-i	-
Salmon street, southeast side, northeast house line of Lefevre..	25	6	11	9			1	
Salmon street, northwest side, 285 feet northeast of northeast house line of Lefevre...............................	25	6	11	6		1		
Salmon street, southeast side, southwest house line of Buckius..	25	6	12		1	
Second street, west side, 8 feet 9 inches south of south house line of Willow......................................	11	6	16	6	\ldots	1	
Second street, west side, opposite center of Pegg..	11	6	19		1	
Second street, east side, opposite north house line of Buttonwood................................	11	6	18	6	1	
Second street, east side, 74 feet north of north house line of Fairmount avenue...................4...............	11	4	7	1	\ldots	
Second street, east side, south house line of Lippincott..	33	6	18	6	1	
Second street, west side, south house line of Allegheny avenue...	33	6	18	6	\ldots	1	
Second street, east side, south house line of Westmoreland ...	33	6	18	6	1	
Second street, west side, 312 feet south of south house line of Ontario..	33	6	17	7	1	.	
Second street, west side, northwest house line of Glenwood avenue..	33	6	18	10	\ldots	1	
Seventh street, west side, north house line of Cambria	33	6	14	10			1	
Seventh strcet, east side, south house line of Indiana avenue...	33	6	15	\cdots			1	
Seventh street, west side, 274 feet north of north house line of Indiana avenue......................................	33	6	15	..		1		
Shackamaxon street, northeast side, 63 feet 6 inches northwest of northwest house line of Wildey.............	18	6	17	5		1		

New Fire Hydrants.—Third District.-Continued.

Tioga street, south side, east house line of Cooper.
Tioga street, south side, east house line of Second
Tioga street, north side, west house line of Turner.

Street.

Location.

Silver street northeast side, northwest house line of Helen.
Somerset street, north side, northwest house line of Emerald
Somerset street, north side, southeast house line of Jasper
Somerset street, north side, southeast house line of Kensington avenue
Sorrell street, northeast side, southwest house line of Bath
Sterner street, northeast side, northwest house line of Helen
St. John street west side, 5 feet north of north house line of Wood
St. John street, east side, north house line of Callowhill. \qquad
\qquad

St. John street, east side, north house line, Fairmount avenue. \qquad
Stoughton street, east side, 110 feet north of north house line of Hart lane..
Tackawana street, northwest side, 40 feet northeast of northeast house line of Gillingham
Tioga street, north side, east house line of Howard
Tioga street, north side, east house line of Mascher.

$\begin{aligned} & \text { 「렬 } \\ & \text { P } \end{aligned}$		$\begin{gathered} \text { 6-Inch } \\ \text { CONNECTION. } \end{gathered}$		Style.			
			旡	$\dot{\infty}$	+	ci $\stackrel{\circ}{\circ}$ 4	0 0 0 ¢
25	6	9	5	1
25	6	20	4	\ldots	1
25	6	15	9	1
25	6	9	2	1
25	6	11	7	1
25	6	8	7	...	1
11	6	13	1
11	6	12	7	...			1
11	6	12	6	1
33	6	7	10	...	1	\cdots
23	6	15	2	1	\ldots
33	6	15	1
33	6	15	1
33	6	15	1
33	6	15	1	...
33	6	14	8			1

Trenton avenue, southeast side, 88 feet southwest of southwest house line of Susquehanna avenue............. Trenton avenue, southeast side, 81 feet northeast of northeast house line of Susquehanna avenue...... Trenton avenue, southeast side, southwest house line of Dauphin.
Tulip street, southeast side, 49 feet 4 inches northeast of northeast house line of Norris.
Tulip street, southeast side, 82 feet northeast of northeast house line of Emlen
Turner street, on dead end of 6-inch pipe 200 feet north of northwest house line of Glenwood avenue..
Ulrick street, west side, south house line of Maria. \qquad
Unity street, northeast side, northwest house line of Frankford avenue..
Unity street, northeast side, southeast house line of Horrocks.. \qquad
Location.
Vienna street, northeast side, southeast house line of Richmond
Wakeling street, northeast side, southeast house liue of Frankford avenue
Westmoreland street, southeast side, northwest house line of Trenton avenue...
Wrekin street, southwest side, west house line of Commerce.
Wrekin street, northeast side, southeast house line of Cedar.
York street, south side, east house line of Leithgrow.
Total..

E	$\begin{gathered} \text { 6-INCH } \\ \text { CONNECTION. } \end{gathered}$		Style.			
	Feet.	In.	$\dot{\infty}$	$\dot{\circ}$ $\stackrel{1}{4}$		¢
6	10			1		
6	10	4		1		
6	10	2		1	
6	14		1		
6	14	4	1
6	...			1		
6	5	6	-	1	
6	14	6	\ldots	.	1	
6	15	1	
6	11	1	
6	13	1	
6	14	6	1	
6	19	6	1			
6	8	8	1			
6	8	6	1	
6	14	9		...	1	
	2,318	5	2	35	129	9

NEW FIRE HYDRANTS.

Fourth Dietrict.

Street.

Location.

Allegheny avenue, north side, 36 feet east of east house line of Eighteenth
Allegheny arexue, south side, 22 feet west of west property line of P. \& R. R Allegheny avenue, south side, 136 feet east of east house line of Twentieth

Allegheny avenue, south side, east house lire of Twenty-first.
Allegheny avenue, south side, east house line of Twenty-second.
Arizona street, south side, east house line of Thirty-second
Arlington street, north side, west house line of Seventeenth
Berks street, south side, west house line of Eighteenth.
Bouvier street, west side, south house line of Cumberland
Broad street, west side, 6 feet 7 inches north of north house line of Vine
Broad street, east side, 6 feet 10 inches north of north house line of Vine.
Broad street, east side, 6 feet 2 inches north of north house line of Wood
Broad street, west side, 6 feet 8 inches north of north house line of Wood
Brown street, south side, east house line of Eighth.
Brown street, north side, 19 feet west of west house line of Darien

New Fire Hydrants-Fourth District-Continued.

New Fire Hydrants-Fourth District-Continued.

Street.

Location.

New Fire Hydrants-Fourth District-Continued.

Stre	E		$\begin{gathered} \text { G-INCH } \\ \text { CONNECTION. } \end{gathered}$		Style.			
			Feet.	In.	∞	-	$\begin{aligned} & \text { of } \\ & \text { o } \\ & \text { 兄 } \end{aligned}$	-
Hamilton street, south side, 122 feet west of west house line of Nineteenth...	15	6	17	6	\ldots		1	
Harlan stret, north side, east house line of Nineteenth....... ...	29	6	8	6		1	
Herman st reet, north side, east house line of Thirty-second...	28	6	12	8			1	
Hicks street, east side, 6 feet south of south house line of Mundell...	28	6	12			1		
Jefferson street, north side, east house line of Marshall.......soo......................................	20	6	14	2			1	
Jefferson street, south side, 7 feet west of east house line of Warnock..	20	6	15	10			1	
Jefferson street, south side, west house line of Marston........................ ...	29	6	16			1	
Lehigh avenue, sonth side, 1 fuot west of west house line of Fifteenth...	28	6	1	6		1	
Lehigh avenue, north side, east house line of Twenty-serenth...	28	6	13	6		1	
Master street, south side, 8 feet west of east house line of Hutchiuson...........	20	6	14	5		1	
Master street, north side, 18 feit 6 incher east of east house line of Thirteenth...................	20	6	14	10		...	1	
Master street, south side, 200 feet east of east house line of Sixteenth...........................	29	6	18	8		.	1	
Montgomery arenue, south side, east house line of Fifteenth...	29	6	15	1	
Montgomery avenue, south side, cast house line of Sixteenth...	29	6	16	\cdots		1	
Montgomery avenue, north side, four fect cast of cast house line of Seventeenth..................................	32	6	13			1	
Muntgomery avenue, north side, east house line of Eightcenth.	32	6	18	8			1	

New Fire Hydrants-Fourth District-Continued.

Street.

Location.

Monument street, north side, west house line of Seve..teenth
Mundell street, northwest side, southwest house line of Fifteenth
Newkirk street, west side, south house line of Jefferson.
Newkirk strcet, east side, 130 feet south of south house line of Cumberland.
Nineteenth street, east side, south house line of Carlton.
Nineteenth street, west side, south house line of Hamilton.
Nineteenth street, west side, south house line of Spring Garden.
Nineteenth street, west side, 222 feet 6 inches north of north house line of Dauphin.
Ninth st reet, east side, 8 feet 2 inches south of south house line of Norris.
North College avenue, north side, east house line of West College avenue.
Opal street, west side, north house line of Dauphin.
Park avenue, west side, north house line of Somerset.
Park avenue west side, 2 feet north of north house line of Clearfield.
Parrish street, south side, 7 feet west of west house line of Twenty-sixth.
Pemberton street, east side, 7 feet 8 inches south of south house line of Wallace.
Philadelphia street, east side, south house line of Huntingdon. \qquad

28

$\begin{aligned} & \text { di } \\ & \text { L } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 立 } \\ & \text { n } \\ & \text { © } \\ & \text { I } \\ & \text { N } \end{aligned}$	$\begin{gathered} \text { 6-In. } \\ \text { Connection. } \end{gathered}$		Style.			
		$\underset{\sim}{\text { ® }}$	$\begin{aligned} & \text { B } \\ & \text { B } \\ & \text { E } \\ & \text { E } \end{aligned}$	$\dot{\circ}$	$\dot{8}$ $\stackrel{\circ}{4}$ 		¢
28	6	11	6	1	
28	6	9	6	1	
28	6	9	1		
28	6	10	1	
15	6	14	4	1	
15	10	19	1	
15	10	19	3	.	\ldots	1	
28	6	14	10	1	
20	6	12	4	1	
29	6	16	1	
28	6	8		1		
28	6	18			1	
28	6	18	8	1	
15	6	14	7	1	
14	4	10	8	1		
28	6	11				1	

New Fire Hydrants-Fourth District-Continued.

Street. Location.	发	E	6-IN(H Connection.		Style.			
			Feet.	In.	$\begin{aligned} & \infty \\ & \dot{0} \end{aligned}$	-	+	¢
Thirteenth street, east side north house line of Susquehanna avenue..	28	6	8	6		1	
Thirteenth street, west side, 5 feet south of south house line of Master..	20	6	14	4		1	
Thirteenth street, east side, south house line of Somerset...............................	28	6	9	6			1	
Thirtieth street, west side, north house line of Master...	29	10	14	9	\ldots	1	
Thirtieth street, west side, north house line of Master...	29	12	13	5	\ldots	1	
Thirty-first street, east side, 7 feet 6 inches north of north house line of Master.........................	29	10	13	8	\ldots	1	
Thirty-second street, west side, north house line of Diamond...	32	6	15			\because	1	
Thirty-third street, east side, 2 feet south of south house line of Columbia avenue	29	12	4				1	
Thirty-third street, west side, opposite centre of Montgonery avenue.	29	6	9			1	
Twelfh st reet, west side, south of house line of Callowhill...	14	6	19		\ldots	1	
Twelfth street, west side, 6 feet south of house line of Norris...	32	6	17	8		1	
Twelfth street, east side, south house line of Dauphin................	28	6	12	8			1	
Twelfth street, west side, opposite centre of Colona..	28	6	14	8		1	
Twentieth street, west side, south house line of Hamilton...	15	6	18	1			1	
Twenty-eighth street, east side, north house line of Columbia avenue	28	6	14	9		\cdots	1	
Twenty-fifh street, west side, south house line of Jefferson.	29	6	8			1	

New Fire Hydrants-Fourth District-Continued.

Street. Location	突		$\begin{gathered} \text { 6-Inch } \\ \text { Connection. } \end{gathered}$		Style.			
			Feet.	In.	$\begin{gathered} \dot{\infty} \\ \dot{0} \end{gathered}$	-	-	ó ¢ ¢
Warnock street, west side, 204 feet south of south house line of Columbia avenue.................................	20	6	9		1		
Westmont street, north side, east house line of Thirty-second..	32	6	8	11	...	1		
York street, north side, 3 feet 6 inches east of east house line of Broad...	28	6	15	6	-	...	1	
York street, north side, 177 feet west of west house line of Thirtieth.................	28	6	13	10	1	
Totals...			1,699	2	26	105	

NEW FIRE HYDRANTS.

Fifth District.

Street. Location.	号		$\begin{gathered} \text { 6-INCH } \\ \text { CONNECTION. } \end{gathered}$		Style.			
			Feet.	In.	$\begin{aligned} & \dot{8} \\ & \dot{O} \end{aligned}$	-	ه $\stackrel{\circ}{\circ}$ 1	∞ 0 0 8
Charles street, southeast side, 8 feet 6 inches northeast of northeast house line of Mitchell	21	6	14	6			1	
James avenue, northwest side, 14 feet southwest of southwest house line of Jeanette..............................	21	6	21			1		
James street, northwest side, 324 feet southwest of southwest house line of Cresson............	28	6	17	9			1	
Manayunk avenue, southwest side, northwest house line of Osborne ...	21	6	14	6			1	
Manayunk avenue, northeast side, 193 feet southeast of southeast house line of Levering.......................	21	10	14	6		1		
Manayunk avenue, northeast side, 18 feet northwest of northwest house line of Roxborough avenue	21	10	14	6		-	1	
Mulberry street, northwest side, 6 feet southwest of southwest house line of Wood...............................	21	6	11	6			1	
Port Royal avenue, southeast side, 590 feet southwest of southwest house line of Bean street..................	21	6	9	6			1	
Ridge avenue, southwest side, 202 feet southeast of southeast hou e line of James.................................	28	12	9	\cdots	
Ridge avenue, southwest side, 159 feet northwest of northwest house line of Scott's lane........................	28	12	7		1	
Rodman street, southeast side, 8 feet southwest of southwest house line of Ridge avenue	28	4	10	\cdots			1	
Selig street, southwest side, 169 feet northwest of northwest house line of Levering.......	21	6	14	6		.	1	
Shur's Lane, northwest side, 4 feet southwest of southwest house line of Ashland	21	6	14	6		1	
Terrace street, northwest corner of Rector...................................	21	6	14	6	,	.	1	
Thirty-fifth street, southeast house line of New Queen	28	6	18	6			1	

New Fire Hydrants.-Fifth District.-Continued.

Street. Loeatien.	定		6-IncH ConNection.		Style.			
			Feet.	In.	$\begin{gathered} \dot{\infty} \\ \stackrel{0}{0} \end{gathered}$	- $\stackrel{\circ}{4}$ 4	® ¢ \%	
'Tibbens street, northeast side, 6 feet southeast of southeast house line of Prospect................................	21	6	12	1	
Webster street, southwest side, 2 feet southeast of southeast house line of Church................................	21	6	11	1	
Wendover street, northwest side, 300 feet 6 inches southwest of southwest house line of Manayunk ave.....	21	6	11	6	\ldots	1	
Wood street, northeast side, south east house line of Gates..	21	6	14	6		1	
Wood street, southwest side, 184 feet northwest of northwest house line of Gates...............................	21	6	14	6			1	
Total		269	3		2	17	1

NEW FIRE HYDRANTS.

Sixth District.

Street.

Location.

Apsley street, northwest side, southwest house line of Wayne..

Apsley street, southeast side, northeast house line of Whittier.
Apsley street, northwest side, northeast house line of Pulaski.
Broad street, west side, north house line of Bristol.
Broad street, west side, north house line of Juniata.

$$		$\begin{gathered} \text { 6-INCH } \\ \text { CONNECTION. } \end{gathered}$		Style.			
		$\begin{aligned} & \stackrel{\text { ® }}{4} \\ & \hline \end{aligned}$	\% \# 品	$\begin{aligned} & \dot{\infty} \\ & \dot{0} \end{aligned}$	+ $\stackrel{0}{8}$ 4	$\begin{aligned} & \text { ai } \\ & \text { ó } \\ & \text { 信 } \end{aligned}$	¢
22	6	14	1	
22	6	14	1		
22	6	14	1	
33	6	9	1	
33	6	9	1	
22	6	14		\ldots	1	
22	6	14			1	
22	6	14	1		
28	6	15	1	
28	6	15	1	
28	6	14	1	
22	6	30	1	
22	6	18	\cdots	1		
22	6	15	...*	1		
28	6	14				1	

New Fire Hydrants—Sixth District．－Continued．

Street．

Location

Good street，southeast side， 341 feet southwest of southwest house line of Germantown avenue

Gowen street，southeast side，northeast house line of Ardleigh
Green street，northeast side， 214 feet northwest of northwest house line of Washington lane．
Hancock street，northeast side，southeast house line of Washington lane．
High street，southeast side，northeast house line of Cedar lane
ell．．

High street，northwest side， 326 feet northeast of northeast house line of Norton

Itchner street on dead end of 6－inch pipe， 182 feet east of east house line of Nineteenth． \qquad

Ward．

28
22
22
22
22
22
22
22
22

号	$\begin{gathered} \text { 6-Inch } \\ \text { CONNECTION. } \end{gathered}$		Style．			
$\begin{aligned} & \text { H } \\ & \mathbb{\otimes} \\ & \text { in } \end{aligned}$	Feet，	In．	$\dot{\dot{\circ}}$	$\stackrel{-}{\circ}$	®i ¢ 安	\％
6	14	．．．		．．．．．	1	
6	16	．．．	．．．	．．．	1	
6	16	．．．．．．．．	．	1		
6	16	．．	．．．．．	．	1	
6	9	．．．	．．．	．．．．．	．．．．．	1
6	14	．．．．．．．．．	．．．．．	．．．．．	1	
6	10	．．．		1	．．．．．．	
6	10	．．．．．．．．．	．．．	1	．．．．．．	
6	21	3		．．．．．	1	
6	16	\ldots			1	
6	16	．．．	．．．．．	．．．	1	
6	22	．．．．．．．．．	．．．．．	．．．．．．	1	
6	15	．．．	．．．	．．．．．	1	
6	10	．．．．．．．．．	．．．	．．．．．	1	
6	15			．．．	1	
6			1			

New Fire Hydrants—Sixth District-Continued.

Street. Location.	号	$\begin{aligned} & \text { B } \\ & \text { o } \\ & 8 \\ & 8 \end{aligned}$						
			Feet.	In.	of	$\stackrel{\sim}{\circ}$	d	-
Jefferson street, southwest side, northwest house line of Norton.............. ...	22	6	16				1	
Little Wayne street, southwest side, 296 feet southeast of southeast house line of Lehman......................	22	6	11			1		
Logan street, northeast side, southeast house line of Ruffner...	28	6	11				1	
Marshall street, west side, south house line of Venango	38	6	14				1	
McKean street, northeast side, 328 feet southeast of southeast house line of Manheim...........................	22	6	14			1		
Mill street, northwest side, southwest house line of Bloyd...	22	6	14				1	
Mill street, northwest side, 500 feet southwest of southwest side of Chew...	22	6	14			1		
Mill street, southeast side, northeast house'line of Cedar lane...	22	6	18				1	
Mill street, southeast side, southwest house line of Wingohocking..	22	6	18			1	
Moreland street, northwest side, northeast house line of Thirty-third.....................................	22	6	14			1	
Moreland street, northwest side, 40 feet northeast of northeast house line of Thirty-third.....................	22	6	14	-		1	
Morris street, northeast side, southeast house line of Rittenhouse..	22	6	16	-			1	
Morris street, southwest side, southeast house line of Lehman...	22	6	15			\ldots	1	
Mt. Airy avenue, southeast side, southwest house line of Chew..	22	12	16		\ldots	1	
Musgrove street, northeast side, southeast house line of Slocum...	22	6	17			1	
Newcomb street, southeast side, northeast house line of Clarissa...	28	6	8				1	

New Fire Hydrants—Sixth District—Continued.

Street.

Location.

New Fire Hydrants—Sixth District-Continued.

Street. Location.	它		6 -INCH Connection.		Style.			
			Feet.	In.	$\dot{\dot{Q}} \dot{\dot{O}}$	$\begin{aligned} & \dot{\circ} \\ & \dot{8} \end{aligned}$	- $\stackrel{\text { d }}{ }$ ¢ ¢	os
S hool lane, northwest side, 43 feet northeast of northeast house line of Wissahickon avenue.................	22	6	14				1	
Sedgwick street, northwest side, 2 feet southwest of southwest house line of Chew...............................	22	6	14				1	
Seymour street, northwest side, northeast house line of Wayne...	22	\ldots	16		1	
Seymour street, southeast side, northeast house line of Henry..	22	6	20				1	
Sixteenth street, east side, south house line of Cayuga...................... ...	33	6	14				1	
Slocum street, northwest side, 307 feet northeast of northeast house line of Musgrove.............................	22	6	13		1		
Springfield street, northwest side, southwest house line of Twenty-ninth..	22	6	18	1	
Springfield street, southeast side, southwest house line of Cresheim...	22	6	14				1	
Springfield street, southeast side, northeast house line of Thirty-first..	22	6	14			1	
Stenton street, southwest side, northwest house line of Willow Grove avenue.......	22	6	21			1	
Stenton street, southwest side, southeast house line of Sixty-fifth...	22	6	16	1	
Tioga street, south side, west house line of Fifteenth. ..	28	6	18			1	
Tioga street, north side, east house line of Twenty-second...	28	6	13	1	
Tioga street, south side, 4 feet west of west house line of Nineteenth..	28	6	17					
Tioga street, north side, west house line of Twentieth.	28	6	11					
Tioga street, south side, west house line of Twenty-first.	28	6	17					

New Fire IIydrants—Sixth District-Continued.

Street. Local	\%		$\begin{gathered} \text { 6-INCH } \\ \text { CONNECTION. } \end{gathered}$		Style.			
			Feet.	In.	$\stackrel{+}{\circ}$	$\begin{aligned} & \dot{-1} \\ & \dot{8} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \dot{\circ} \\ & \text { B } \end{aligned}$	¢
Tioga street, north side, west house line of Carlisle.	28	6	17				2	
Tioga street, north side, west house line of Sixteenth.	28	6	12				1	
Tioga street, south side, 4 feet west of west house line of Nineteenth.	28	6				1	
Tioga street, north side, west house house line of Twentieth.	28	6					1	
Tioga street, south side, west house line of Twenty-first.	28	6					1	
Twenty-second street, east side, south house line of Westmoreland.	28	6	14		1	
Twenty-second street, east side, south house line of Ontario..	28	6	11				1	
Thirty-fifth street, southwest side, 123 feet north of north house line of Westmoreland..	22	6	6		1		
Venango street, north side, east house line of Eleventh	33	6	15				1	
Venango street, south side, 7 feet east of east house line of Twelfth.	33	6	15				1	
Walnut lane, southeast side, 303 feet northeast of northeast house lize of Morton	22	6	18			1		
W alnut lane, southeast side, southwest house line of Cedar lane.	22	6	19				1	
W alnut lane, southeast side, southwest house line of Adams,	22	6	22				1	
Westmoreland street, north side, west house line of Smedley.	28	6	16					1
Willow Grove street, northwest side, 400 feet northwest of northeast house line of Stenton ave., Mont'g Co		6	14			1		
Willow Grove street, northwest side, 400 feet southwest of southwest house line of Ardmore, Mont'g Co...		6	14			1		

New Fire Hydrants-Sixth District-Continued.

Streeh. Location.	定	$\begin{aligned} & \text { 뎔 } \\ & \text { 형 } \\ & \frac{\pi}{6} \end{aligned}$	$\begin{gathered} \text { Q-INCH } \\ \text { CORNECTION. } \end{gathered}$		Style			
			Feet.	In.	$\dot{\infty}$	-i	$\begin{aligned} & \dot{+} \\ & \dot{8} \\ & \dot{4} \end{aligned}$	-
Willow Grove street, northwest side, south west house line of Ardmore, Montgomery Co.......................		6	14			1		
Winona street, on dead end of 6 -inch pipe, 403 feet southwest of southwest house line of Morris............	22	6			1			
Wisaahickon street, northeast side, 281 feet southeast of southeast house line of Queen.........................	22	12	9			1		
Wissahickon street, southwest side, northwest house line of Coulter...	22	6	8				1	
Wissahickon street, southwest side, 177 feet southeast of southeast house line of School..........................	22	6	8			1.		
Wissahickon street, northeast side, 8 feet northwest of northwest house line of Lincoln Drive...............	22	20	19			1		
Wissahickon street, southwest side, 382 feet northwest of northwest house line of Washington..............	22	20	11			1		
Wissahickon street, northeast side, southeast house line of Norton..	22	6	16			1		
Wissahickon st t, northeast side, 235 feet southeast of southeast house line of Franklin......................	22	6	17			1		
Wissahickon srteet, northeast side, 9 feet northwest of northwest house line of Philellena................... .	22	20	16			1		
Wissahickon street, northeast side, 222 feet northwest of northwest house line of Carpenter..................	22	20	18			1		
Wissahickon street, northeast side, 320 feet northwest of northwest house line of Ellet.......................	22	20	16			1		
W issahickon street, northeast side, 150 feet southeast of southeast house line of Mount Airy..................	22	20				1		
Wissahickon street, southwest side, 49 feet 6 inches southeast of southeast house line of Rittenhouse.	22	16	23			1		
Total.			1,508	3	3	28	73	2

FIRE HYDRANTS RENEWED.

First District.

Street. Loc	\%	Size of Main.		-INCH CONNECTION.		STYLE.									
				Takrin out.	Putin.										
		ت்	$\begin{aligned} & \dot{8} \\ & \dot{8} \end{aligned}$			$\begin{gathered} \text { 今' } \\ \text { 品 } \end{gathered}$	8 8. g g	∞	$\begin{aligned} & i \\ & \dot{0} \\ & 4 \end{aligned}$	$\begin{aligned} & \text { i } \\ & \text { ó } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \infty \\ & \dot{0} \\ & \dot{4} \end{aligned}$	∞ ∞ $\stackrel{\circ}{\circ}$ 0 ¢			
Carpenter street, north side, 9 feet east of east house line of Sixth.............................	2	6		15	1					1			
Carpenter street, north side, 6 feet east of east house line of Passyunk avenue.............	2	6		15		1	\ldots				1			
Carpenter street, north side, 115 feet east of east house line of Eighteenth....................	30	6	15	-	1	1			
Catharine street, south side, 82 feet east of Grays Ferry road......................................	30	6	12		1					1			
(Christian street, north side, 8 feet west of west house line of Twenty-second.................	30	6	14	6	1	\cdot	1			
Eighteenth street, east side, 7 feet south of Christisn..	30	6	15		1	1			
Eleventh street, east side, 25 feet south of South..	14	10	16		1	1			
Ellsworth street, north side, 239 feet east of east house line of Twenty-first..........	26	6	14	6	1					...	1			
Evangelist street, south side, 95 feet east of east house line of Eighth..........................	8	4		4	6	1					1				
Fitzwater street, north side, 152 feet east of east house line of Seventh........................	4	6	15	1			1				
Godfrey street, north side, 159 feet east of southeast house line of Moyamensing avenue	1	4		10		1				\ldots	1			
Girays Ferry road, west side, 43 feet north of north house line of Fagleson....................	80	6		17	6	1					1			
Hallowell street, north side, 46 feet west of west house line of Sixth.............................	2	6		5		1			1				
Hepburn street, east side, 81 feet south of south house line of Bainbridge....................	30		6	8		1					1				

Street.

Location.

Marriott street, Dorthwest corner of Finh.

Monroe street, south side, west house line of Third.
Monroe street, south side, 2 feet cast of east house line of Fourth
Monroe street, north side, 156 feet east of east house line of Fifh.
Nineteenth street, east side, 6 feet south of south house line of Washington avenue.
Queen street, south side, east house line of Swanson.
Saranac street, north side, 2 feet east of southeast house line of Moyamensing avenue. Scott street, north side, 131 feet east of Ninth.
Seventcenth street, west side, 14 feet south of south house line of Carpenter.
Sixth street, west side, 212 feet north of north house line of Catharine.
Sixteenth street, east side, south house line of Bainbridge.
Snyder stroet, south side, 14 feet east of 8ixth.
sutherlaud avenue, east side, 181 feet north of north house line of Bainbridge.
Third street, enst side, north house line of Monroe.
Twelfh street, easl side, 7 feet north of north house line of Miffin.

$\begin{aligned} & \text { d } \\ & \text { 足 } \end{aligned}$	$\begin{aligned} & \text { Sige of } \\ & \text { Main. } \end{aligned}$		$\left\|\begin{array}{c} \text { Q-Inct } \\ \text { CONAECTION } \end{array}\right\|$		STYLE.									
			taken Oft.	Put In.										
	밍				Feet.	In.		$\begin{aligned} & \dot{\circ} \\ & \stackrel{\circ}{4} \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { d } \\ & \dot{\sim} \\ & \dot{Z} \end{aligned}\right.$	$\begin{gathered} \dot{\infty} \\ \dot{8} \end{gathered}$	$\begin{aligned} & \infty \\ & \dot{0} \\ & \hline 0 \end{aligned}$	$\stackrel{\dot{\circ}}{\stackrel{\circ}{\boldsymbol{Z}}}$	$\begin{aligned} & \dot{+} \\ & \dot{\mathbf{x}} \end{aligned}$	$\stackrel{\dot{\circ}}{\dot{8}}$
2	6			$1 . .$		1			1			
4	6	-	14	6					1			
4	6		18	6	1					1			
4	6		13	6	1					1				
26	12		15	1					1			
3	6		15		1						1			
1	4		6		1				1				
1	4		9							1				
30	6		15		1						1			
8	6		15		1						1			
30	6													
			14	6	1						1			
1	6		8		1	1			
30	6	6	16	1		1			
4	6			6	1					1			
1			15								1			

Fire Hydrants Renewed-First District-Continued.

Street. Loca	号					STYLE.							
						Taken Cut.				Put In.			
		0		Feet.	In.		$\dot{\dot{8}}$	$\begin{aligned} & \dot{8} \\ & \dot{8} \\ & \dot{4} \end{aligned}$	$\begin{aligned} & \infty \\ & \dot{\circ} \\ & \dot{\sim} \end{aligned}$	\pm	-	-	∞ 0 8 8
Twelfh strcet, west side, 133 feet south of Wharton...	26	6		15		1						1	
Twelfh and Wharton street, First District Yard..	26	6		3					1			1	
Twenty-first street, east side 18 feet south of south house line of Catharine.................	30	6		14	6	1					1	
Washington avenue, north side, east house line of Iingo...	30	6				1						1	
Webster strcet, south side, 89 feet east of east house line of Eighteenth.......................	30	4	8	6	1							
W ebster street, north side, 10 feet east of east house line of Twentieth.......................	30	4		8	6	1							
Wharton street, south side, 182 feet east of east house line of Seventh.........................	1			14		1					1		
Totals.				481		34			2		10	26	

FIRE HYDRANTS RENEWED.

Second Dibtrict.

Fire Hydrants Renewed-Second District-Continued.

Street.
Location.

Filbert street, north side, 44 feet west of west house line of Twenty-second.... Filbert street, south side, 223 feet east of each honse line of Thirty-seventh.. Fifty-second st., S. E. aide, 26 feet 6 inches N. W. of N. W. curb line of Baltimore ave.... Fifty-second street, east side, 267 feet north of north house line of South.... Fifty-second st reet, east side, 22 feet north of north curb line of Walnut.. Fifty-second street, east side, 2 feet 6 inches south of south house line of Market. Fortieth street, west side, 14; feet south of south house line of Brown.. Forty-fifth street, west side, 151 feet north of north house line of Wallace... Forty-fifth street, west side, 256 feet south of south house line of Fairmount avenue.... Forty-fifth street, east side, 118 feet north of north house line of Fairmount avenue...... Forty-first street, west side, 136 feet north of north house line of Baring.. Forty-second street, east side, 126 feet north of north house line of Pine. Forty-sixth street, west side, 238 feet sonth of south house line of Westminster avenue. Forty-six th strcet, west side, 238 feet south of south house line of Westminster avenue.... Gray's Ferry road, northwest corner of Forty-eighth.

Fire Hydrants Renewed-Second District-Continued.

Street.

Iocation.

Powelton avenue, south side, 22 feet west of west house line of Thirty-first. Powelton avenue, south side, 22 feet west of west house line of Thirty-first. Powelton avenue, south side, 138 feet east of east house line of Thirty-third. Powelton avenue, north side, 85 feet east of east house line of Thirty-fourth. Race street, north side, 75 feet east of east house line of Second Race street, north side, 149 feet east of east house line of Franklin. Sansom street, north side, west house line of Albion.
Bansom street, north side, 6 feet west of weat house line of Twenty-second Sansom street, north side, 47 feet east of east house line of Thirty-eighth. Sixtieth street, northwest side, 4 feet northeast of northeast house line of South Sixtieth street, northw ist side, 26 feet southwest of southwest house line of Hazel. Sixtieth street, northwest side, 41 feet southwest of southwest house line of Lomberd... Bixtieth street, northwest side, 224 feet northeast of northeast house line of Lombard.... Springfield street, southeast side, 2 feet northeast of northeast house line of Forty-seventh Third atreet, west side, 2 feet north of south house line of Cherry \qquad
.... 6

Fire Hydrants Renewed-Second District-Continued.

Street. Loc	家	Sige of Main.$\begin{array}{l\|l} \hline 0 & \\ \hline 0 & 0 \\ \hline 0 & 0 \\ \hline \end{array}$	$\left\lvert\, \begin{gathered} \text { G-INCH CON- } \\ \text { NECTION. } \end{gathered}\right.$		STYLE.										
					Taken OUt.						Put In.				
			Feet.	In.	$\dot{\infty}$	$\dot{\dot{8}}$	$\begin{aligned} & \dot{\sim} \\ & \dot{\Delta} \\ & \dot{z} \end{aligned}$	$\begin{aligned} & \text { ம் } \\ & \dot{\circ} \\ & \dot{z} \end{aligned}$	$\begin{gathered} \dot{8} \\ \dot{8} \\ \dot{4} \end{gathered}$	$\begin{aligned} & \dot{\circ} \\ & \dot{0} \\ & \dot{4} \end{aligned}$	$\begin{aligned} & \dot{0} \\ & 0 \end{aligned}$		-	es	- $\stackrel{\circ}{8}$ 8
Vine street, south side, 2 feet west of west house line of Perry	10	12	14		1								1		
Vine street, south side, east house line of Twenty-fourth..	10	6	8	9	1								1		
Walnut street, southeast corner of Nineteenth..	8	12	11	6				1						1	
Walnut street, south side, 9 feet 6 inches east of east house line of Thirty-ninth..	27	10	21	10	1								1		
Walnut street, north side, 298 feet weat of west house line of Thirty-ninth	27	10	23		1								1		
Walnut street, south side, 66 feet 8 inches west of west house line of St. Mark's square...	27		28	3	1								1		
Walnut street, south side, 228 feet east of east house line of Forty-third......................	27	6					1						1		
Water street, west side, 248 feet north of north house line of Walnut...........................	5	6	5		1						1			
Water street, west side, 2 feet south of south house line of Chestnut....................	5	6	4		1							...	1		
Water street, west side, 2 feet south of south house line of Arch.................................	6	6	4	6	1								1		
Water, street' west side 298 feet south of south house line of Race...............................	6	6.	4	6	1							1			
Water street, west side, 14 feet south of south house line of Race................................	6	6	4	6	1								1		
Woodland avenue, north side, 89 feet west of west house line of Thirty-eighth.	27	8	28		1								1		
Woodland avenue, north side, 89 feet west of west house line of Thirty-eighth..............	27						1					- \quad 。	1		
Totals.			722		66	1	9	6	1	5	12	23		5	1

FIRE HYDRANTS RENEWED.

Thikd Dietrict.

Street.

Location.

Ash street, southwest side, 61 feet 8 inches northwest of northwest house line of Wildey Beaver street, north side, 95 feet west of west house line of Charlotta Blair street, east side, 193 feet north of north house line of Norris Cadwalader street, west side, 190 feet south of south house line of Thompson. Cemetery avenue, north side, east house line of Malvern

Delaware avenue, weat side, 240 feet north of north house line of Poplar.
Diamond street, northeast corner of American.
Fourth street, west side, 18 feet north of north house line of Poplar
Frankford avenue, northwest side, 6 feet northeast of northeast house line of Adams. Frankford avenue, southeast side, northeast house line of Green Frankford ave., southeast side, 226 foet 8 inchessouthwest of southwest house line of Ruan Frank ford avenue, southeast side, 302 feet northeast of northeast house line of Unity...... Frankford avenue, southeast side, 114 fect northeast of northeast house line of Orthodox Frankford avenue, northwest side, nort heast house line of Allen \qquad

Fire Hydrants Renewed-Third District-Continued.

Street.

Location.

Front street, east side, opposite north house line of Ellen.
Frankford Punping Station, west side, 33 feet west of west front of engine house...
Girard aveuue, southeast side, northwest house line of Montgomery avenue. Hope street, east side, 74 feet 9 inchea north of north house line of Oxford. Jasper street, northeast side, northwest house line of Sterner. Judd street, northeast side, southeast house line of Thompson
Kensington avenue, northwest side, opposite Hilton.
Lawrence street, west side, 110 feet north of north house line of Thompeon
Lee street, east side, south house line of Tioga.
Letterly street, N. E. side, 71 feet 6 inches S. E. of S. E. house line of Kensington ave. Manor street, east side, 95 feet 9 inches south of south house line of Berks. Marlborough street, S . W. side, 145 feet sontheast of southeast house line of Girard ave. Marcher street, east side, 81 feet south of south bouse line of Altmeier. Melvale street, northwent side, 86 feet southwest of southwest house line of Linden. Montgomery ave., S. E. side, 172 feet northwest of northwest house line of Memphis...

$\begin{aligned} & \text { 耳 } \\ & \dot{\alpha} \end{aligned}$	Size of Main.				8TYLE.									
			TaEEn OUt.	Put In.										
	00				Feet.	In. :	$\begin{gathered} \infty \\ 0 \\ 0 \end{gathered}$	$\begin{aligned} & \dot{\sim} \\ & \dot{0} \\ & \dot{4} \end{aligned}$	$\begin{aligned} & \dot{0} \\ & \dot{8} \\ & \dot{Z} \end{aligned}$	$\begin{aligned} & \text { os } \\ & \dot{8} \\ & \dot{4} \end{aligned}$	0	$\stackrel{i}{\dot{8}}$	+	¢
16	6	1		1			
85		39		1				1			
18	6						1				1			
17	4		8	7	1					1				
25	6				.	1	1			
18	6	……	1	1			
33	6	… ..	11	6	1				1			
17	6	...	11	6	1		1				
25	6	-			1			2			
81	6	.	10	6	1			-	1.				
19	6	18	1	1			1			
18	6		14		1					1				
19	6	...						1		1				
25	6	14	8	1		1	-oo.0.		
18	6		14	6	1					1				

Fire IIydrants Renewed-Third District.-Continued.

street. Locat	-	Size of Main.		$\begin{gathered} \text { 6-INCH. } \\ \text { CONNECTION } \end{gathered}$		STYLE.									
				Taken Out.	Put In.										
		뭉	$\underset{\sim}{8}$			Feet.	In.	$\begin{aligned} & \infty \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \dot{0} \\ & \dot{8} \\ & \dot{4} \end{aligned}$	$\begin{aligned} & \text { i } \\ & \dot{0} \\ & \dot{4} \end{aligned}$	$\begin{aligned} & \infty \\ & \dot{8} \\ & \dot{4} \end{aligned}$	$\dot{\infty}$	$\stackrel{\square}{\circ}$	+	-
Norris street, south side, east house line of Lawrence.......................................	19	6					1					1			
Orchard street, northwest side, 293 feet northeast of northeast house line of Church.....	23	6	12	6	1					1				
Paul street, west side, 121 feet south of southeast house line of Meadow.......................	23	6	6	10	1	-				1				
Penn street, southeast side, southwest house line of Ruan...	23	6		6	6				1			1			
Poplar street, southwest corner of Fifth...........................	16	16			1			1			
Randolph street, east side, 115 feet 10 inches south of souih house line of Columbia ave.-	19	6	1			\cdots	1			
Richmond street, northwest side, 115 feet southeast of south house line of Plum...........	18	6	14		1					1				
Second street, west side, 18 feet north of north house line of Noble............................	11	6	18	9	1	1			
Second street, west side, opposite Putnam...	17	6		8	8	1			1				
Second strect, east side, 192 feet north of north house line of Norris............................	19	6	18		1			1			
Silver street, north side, west house line of Helen...	33	6				1					1			
Somerset street, north side, west house line of Emerald..	25	6						1		1			
Somerset street, north side, east house line of Jasper..	25	6			-					1			
Sterner street, northeast side, weat house line of Helen...........	33	6					1					1			
St. John street, west side, 5 feet 6 inches north of north house line of Wille	11	6		13	3	1				...	11				

Fire Hydrants Renewed-Third District.-Continued.

Street. Lo	完	Sizk of MAIN.		6-Inch ConNECTION.		STYLE.									
				Taken Out.	Put In.										
		0.	$\begin{aligned} & \text { é } \\ & \text { 艺 } \end{aligned}$			Feet.	In.	$\dot{\infty}$	$\begin{aligned} & \text { - } \\ & \dot{8} \\ & \dot{z} \end{aligned}$	$\begin{aligned} & \text { i } \\ & \text { ó } \\ & \text { B } \end{aligned}$	¢	$\begin{aligned} & \infty \\ & 0 . \\ & 0 \end{aligned}$	$\begin{gathered} \dot{\circ} \\ \dot{8} \\ \dot{Z} \end{gathered}$	$\begin{aligned} & \text { of } \\ & \text { ó } \\ & \text { i } \end{aligned}$	-
St. John street, east side, 7 feet 4 Inches south of south honse line of Noble.................	11	6	12	8	1					1				
St. John street, east side, 6 feet south of south house line of Canal.............	16	6	\cdot	18		1		-	1			
Thompson street, northwest side, opposite Emory...	18	6	.	8	6	1	1				
Tioga street, north side, east house line of Howard..	25	6			$\cdot \cdot$	-	1	. \cdot	...	1			
Tioga street, north side, east house line of Mascher...	25	6					,	1		...	1			
Wood street, north side, west house line of Crown...................................	12	6	16		1	\cdots	1			
York avenue, east side, south house line of Callowhill......................................	12	6	...	18	10	1				1			
York avenue, northeast side, southeast house line of Thompson.................................	81	6	8	2	1					1			
York street, northeast side, southeast house line of Memphis......................................	81	6		5	3	1				1					
York street, northeast side, southeast house line of Memphis......................................	81	6		8	7	1						1			
Totals.......				479		36	6	5	7	1	19	84			

FIRE HYDRANTS RENEWED.

Fourth District.

Location.

Oxford street, northeast corner of Bailey.
, northeast side, 13 feet southeast of southeast house line of Gold... outh of south house line of Pennsylvania ave Sixteenth street, east side, 8 feet 6 inches sof honse line of Eleventh Spring Garden street, north side, 65 feet east of east house whe line of Eleventh.. Spring Garden street, north side, 152 feet 9 inches west of west house line of Ridge avenue. Stanley street, east side, 18 feet 6 inches north or norl Twelfth street, west side, 4 feet 7 inches north of north house Twenty-eighth street, west side, 25 feet south of south house line of Montgomery ave Twenty-fifth street, southeast corner of Sharswood.
Twenty-ninth street, northwest corner of Thompson
Twenty-second street, east side, south house line of Huntingdon..

Totals...

FIRE HYDRANTS RENEWED.

Fifth District.

		MAIN.		nection.		Taken Out.				Put In.		
	家	0	$\begin{aligned} & \text { é } \\ & 4 \\ & \hline \end{aligned}$	Feet.	In.	$\dot{\dot{0}}$	$\begin{aligned} & \dot{\circ} \\ & \dot{8} \end{aligned}$	ヘ $\stackrel{\circ}{4}$	$\begin{aligned} & \text { os } \\ & \dot{0} \\ & \text { B } \end{aligned}$	$\begin{array}{ll}\infty & \dot{0} \\ 0 & \dot{8} \\ 0\end{array}$	$\begin{aligned} & \text { í } \\ & \dot{\mathbf{B}} \end{aligned}$	-
Apple street, northeast side, 134 feet southeast of southeast bouse llne of Penn.............	21	4				1				1		
Gay street, southeant side, 45 feet northeast of northeast house line of Baker................	21	6				1			1		
Green Lane, northwest side, 2 feet northeast of northeast house line of Hamilton.........	21	6	\ldots	4		1				1	
Green Lane, southeast side, 10 feet northeast of northeast house line of Manayunk ave..	21	6			1				1		
Jefferson street, southeast side, 1 foot northeast of southwest house line of Fowler........	21	6				1				1		
Levering street, southwest house line of Wood..........................	21	6	14	6	1 \cdot.....	1	
Leverington st., northwest side, 200 feet northeast of northeast house line of Ridge ave..	21	6				1			1		
Lyceum avenue, southeast side, 12 feet northeast of northeast house line of Tower.......\|	21	6				1			1		
Main street, northeast side, 61 feet northwest of northwest house line of Levering.......	21	6			1	1		
Ridge avenue, northeast side, 16 feet southeast of southeast house line of Gerhart........	21	6				1	1	
Ridge avenue, northeast side, 316 feet southeast of southeast house line of Queen Lane..	28	6	\ldots	7	1				1	
Ridge avenue, southwest side, 192 feet northwest of northwest house line of Ferry	28	12									$1 \mid$	
Ridge avenue, northeast side, 9 feet northwost of northwest house line of Scotts lane....	28	6		6		1				1	
Eidge aveuue, northeast side, 12 feet southeast of southeast house line of James...........	28	6	6	.	1					1	

Fire Hydranto-Fifth District-Continued.

Location.

Street. Location.	安	MAIN.		NECTION.		taxen Out.				Put in.			
		$\ddot{0}$	$\begin{aligned} & \stackrel{\stackrel{\rightharpoonup}{シ}}{\stackrel{y}{4}} \end{aligned}$	Feet.	In.	$\begin{aligned} & \dot{\infty} \\ & \dot{0} \end{aligned}$	$\begin{aligned} & \dot{-1} \\ & \dot{8} \end{aligned}$	$\left.\begin{aligned} & \mathbf{~ i} \\ & \dot{0} \\ & \dot{z} \end{aligned} \right\rvert\,$	$\begin{aligned} & \infty \\ & \dot{8} \\ & \dot{4} \end{aligned}$	$\stackrel{\dot{x}}{\dot{\circ}}$	$\begin{aligned} & \dot{8} \\ & \dot{4} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \dot{Z} \\ & \dot{8} \end{aligned}$	¢
Ridge ave., northeast side, 2 feet south cast of southeast house line of Roxborough ave...	21	6	10		1						1	
Ridge avenue, northeast side, 12 feet southeast of southeast house line of James...........	28	6						1				1	
Ridge avenue, northeast side, 32 feet northwest of northweat house line of Hermit.......	21	6		15		1						1	
Spencer street, northwest side, 184 feet southwest of southweet house line of Cresson.....	28	6					1				1		
Wood street, northwest corner of Mulberry..		6						1				1	
Total.			62	6	15	1	3	7	1	11	

FIRE HYDRANTS RENEWED.

Fire Hydrants Renewed-Sixth Iistrict-Continued.

Street. Location.	号			$\left\lvert\, \begin{gathered} \text { 6-Inch } \\ \text { CONN ECTION } \end{gathered}\right.$		STY LE.									
				Takin out.	Putin.										
		ס	3			Feet.	In.	$\begin{aligned} & \dot{\infty} \\ & 0 \end{aligned}$	\dot{i}	$\begin{aligned} & \text { i } \\ & \dot{\mathbf{B}} \\ & \text { B } \end{aligned}$	$\begin{aligned} & \infty \\ & \dot{\circ} \\ & \dot{4} \end{aligned}$	$\begin{aligned} & \dot{0} \\ & \dot{0} \end{aligned}$	-1 \sim 8	-	¢
Mount Pleasant street, northw't side, 68 feet southw't of southw't house line of Mower...	22	6				1				1			
Ninth street, west side, 301 feet north of northwest house line of Ontario....................	22	6				1			1					
Rittenhouse strect, southeast side, 24 feet northeast of Wissahickon............................	22	6						1		,	1			
Tioga street, north side, 180 feet east of east house line of Nineteenth...........................	28	6		12		1					1			
Tioga street, north side, 1026 feet east of east house line of Eighth..............................		6		15		1				.	1			
Upsal street, northwest side, southwest house line of Emlen....	22	6					...	1	1			
Walnut lane, southeast side, southwest house line of Adams.......................................		6						1	$\cdot \cdot$	1			
Wister street, northwest side, 161 feet northeast of northeast bouse line of Olney road....		6								1			
Totals				91	6	14		7	1	2	11	9			

Recapitulation of Fire Hydrants Set, Renewed, and Removed.

Districts.	Stile.					Total.
	$\begin{aligned} & \text { Old } \\ & \text { Style. } \end{aligned}$	No. 1. 1 Way.	$\begin{aligned} & \text { No. } 2 . \\ & 2 \text { Way. } \end{aligned}$	No. 3. 8 Way.	No. 4.	
		31	66		97
		15	87	\ldots	102
	2	35	129	9	175
		26	105	181
	..	2	17	1	20
	8	28	73	2		106
Total............................	5	137	477	12	681
奖		10	26		\cdots	86
	12	23	47	5	1	88
	1	19	84	54
	1	8	15	1	25
	7	1	11			19
	2	11	9			22
Total............................	23	72	142	6	1	244
Total new hydrants.........						875
	57	1		1		69
	42	1	7	3		53
	69	1	1	1		72
	48	...	4	4		51
	3		1		4
	28	2	1	5		86
Total............................	242	5	14	14		275
Total added during 1891...						356

Fire Hydrants by Purveyor's Districts.

Districts.	Style.						Totals.
	Old.	No. 1.	No. 2.	No. 8.	No. 4.	No. 6.	
Flrst..............................	582	206	44	203	1,488
Second...........................	950	210	490	186	1	26	1,863
Third.............................	975	287	564	200	2	1,688
Fourth	568	168	545	229	1	4	1,510
Fifth	220	28	114	12	369
Sixth.............................	401	208	248	105		957
Totals....................	3,696	1,082	2,408	935	4	30	8,105

Fire Hydrants by Wards.

Wards.	Style.						Total.
	O. S.	No. 1.	No. 2.	No. 3.	No. 4.	No. 5.	
First....................................	196	60	83	44	383
Becond.................................	72	26	59	29	186
Third..................................	47	14	28	11	100
Fourth	86	12	21	24	93
Fifth	76	25	32	31	.	8	167
Sixth...................................	38	13	40	34	1	4	130
Seventh................................	86	12	55	15	1	169
Eighth.................................	72	25	62	18	3	180
Ninth..................................	48	27	56	21	.	3	155
Tenth...	56	25	38	13	7	139
meventh..............................	41	11	29	2		1	84
Twelfh.........................	68	4	15	10	..		87
Thirteenth...........................	63	11	37	16		127
Fourteenth...........................	49	10	85	18	112
Fitteenth	106	48	97	66	1	2	315
Sixteenth.............................	40	13	34	8	1	96
8eventeenth	49	20	21	9	99
Eighteenth...........................	113	21	42	20	\cdots	196
Nineteenth...........................	159	35	101	87		332
Twentieth	122	18	78	27	245
Twenty-first.........................	196	19	99	9		...	828
Twenty-mecond......................	326	169	181	80		...	756
Twenty-third.............	158	23	63	20		259
Twenty-fourth	236	32	90	16	1	375
Twenty-ifh	177	43	102	15			337
Twenty-sixth	145	65	148	69		422
Twenty-serenth.....................	218	35	98	20	.	1	867
Twenty-eighth......................	138	53	209	63			463
Twenty-ninth	119	83	104	44		1	801
Thirtieth	72	27	82	24		205
Thirty-irst............................	89	25	53	28			195
Thirty-second........................	65	15	52	25		1	148
Thirty-third..........................	111	50	120	59	1	341
Thirty-fourth	134	18	58	10		2	217
Thirty-afth			1				1
Totals..........................	3,696	1,032	2,408	935	4	30	8,105

Statement of the number of Fire Hydrants by Districts and Wards during 1891, nd total previous thereto.

Number of attachments for fire purposes previously reported.
. 395

Third District..

Attachments, etc., made by the Purveyors, in accordance with permits issued by the Bureau of Water. Arranged by months.

Attachments, etc., made by the Purveyors, in accordance with permits issued by the Bureau of Water. Arranged by Districts.

Account of New Stops for 1891.

Repairs to Mains, Stops, and Fire Hydrants; also, Stops and Fire Hydrants Removed during 1891.

Districts.	Repairs to Mains.	Stops.			Fire Hydrants.		
		Repaired.	Renewed.	Removed.	Repaired.	Renewed.	Remored.
First	77	176	61	6	815	36	59
Second..........	146	263	57	6	197	88	58
Third............	173	668	24	5	413	54	72
Fourth.........	228	886	10	5	1,159	25	51
Fifth.............	17	42	3		81	19	4
Sixth............	74	34	18	1	22	22	38
Total.....	715	1,569	173	23	2,137	244	875

Number of Complaints and Examinations during 1890 and 1891.

Months.	Hydrants.		Service Pipee.		Wash Paves.		Spigots.		Water-Closets.		Horse Troughs.		No. Leaks.		Total.	
	1890.	1891.	1890.	1891.	1890.	1891.	1890.	1891.	1890.	1891.	1890.	1891.	1890.	1891.	1890.	1801.
January.............	94	244	52	103	1	5	1	9	2	2	3	6	15	62	168	$4: 31$
February...........	90	109	47	61	5	2	3	1	4	4	2	16	33	160	217
March................	90	126	58	64		9	3	1	...	4	3	3	34	48	188	255
A pril.................	72	126	47	53	8	5	1	5	\cdots	4	2	30	52	155	245
May..................	106	116	70	67	2	6	1	8	2	2	7	69	49	257	243
June..................	96	82	67	71	5	\cdot	...	2	4	13	58	40	243	195
July...................	124	119	81	43	8	5	2	-	2	3	74	36	284	208
August:..............	102	115	77	64	8	5	2	1	8	56	39	243	224
Beptember...........	118	160	86	62	6	8	8		1	5	8	1	57	33	274	264
October	111	151	76	83	2	6	3	...	1	8	66	44	267	284
November	89	129	104	86	10	3	5	-	3	1	8	47	33	261	258
December...........	168	174	107	65	5	4	8		3	1	52	29	835	272
Totals...........	1,255	1,651	872	822	41	66	26	23	17	25	50	15	574	498	2,885	8,090

Number of Valves raised in the several Districts during the year 1891; Also, in each year since 1873.

Tabular Statemont of Work Connected with the Distribution for the Twelve Years, 1880 to 1891, inclusive.

Yeara	Pipe.											Additional fire hydrants.				Sprvice Attachments.					
	Extensions.		Repairs and relays.		Total pipe handled.		Total amount in use.		Total amount handled.												
	Feet.	Pounds.					1/2 in.	5/8 in.	3/4in.	1 in.	11/2in.	2 in.	Total.								
1880...	23,085	844,946	9,557	262,826	32,642	1,107,772	3,927,623	192,816,906	4,161,768	$200,136,708$	138	70	5,358	34	2,687	118	49	89			2,918
1881...	56,616	2,832,623	3,832	199,649	60,448	3,032,272	3,981,239	195,649,529	4,225,216	203,168,980	249	144	1,502	42	3,166	137					8,483
1882...	56,860	8,396,165	7,740	484,092	64,600	5,880,257	4,081,180	202,202,522	4,289,816	209,019,237	312	120	5,622	45	3,169	110	78				3,481
1883...	63,215	3,048,64;	12,605	675,420	75,880	3,724,065	4,141,395	205,251,167	4,365,696	212,778,301	281	130	6,752	63	4,576	97	71	133			4,877
1884...	84,451	7,155,385	18,079	1,380,271	102,530	8,585,656	4,228,846	212,406,552	4,468,226	221,308,957	324	147	5,887	560	. 5,529	185	84			7	5,945
1885...	137,967	12,234,074	93,783.	3,265,537	231,850	15,499,611	4,366,813	224,640,526	4,700,076	236,808,568	539	307	6,195	305	6,734	254	121			16	7,285
1886...	136,831	18,238,457	121,210	4,883,826	258,011	23,122,283	4,503,644	242,879,083	4,958,117	259,930,851	736	395	6,490	284	7,482	258	104			32	8,009
1887...	122.790	14,780,082	34,098	1,329,03	156,888	16,109,165	4,626,434	257,659,165	5,115,005	276,340,016	546	429	6,715	253	7,892	317	124	143	2	54	8,532
1888...	183,552	6,356,379	45,943	1,486,631	179,495	7,843,010	4,759,986	264,015,544	5,294,500	283,883,026	772	214	6,929	267	8,260	193	139	118	23	55	8,788
1889...	147,171	12,270,311	57,836	2,410,677	205,007	14,680,988	4,907,157	276,285,855	5,499,507	298,514,014	601	247	7,433	304	8,950	263	149	119	17	46	9,544
1890...	159,176	14,164,305	70,346	3,058,294	229,722	17,222,599	5,066,833	290,450,160	5,729,229	315,736,613	840	316	, 7,749	552	9,248	426			30	46	10,081
1891...	221,336	21,493,086	64,491	2,051,782	285,827	23,544,868	5,287,669	811,943,246	6,015,056	339,281,481	1,186	356	18,105	697	7,607	243	130	152	13	38	8,178

New Meters Set.

New Meters Set－Continued．

					8ize．									
兑	Occupant．	Location．	Date when Set．	Name of Meter．		皆	$\begin{aligned} & \text { 号 } \\ & \text { 号 } \end{aligned}$	$\begin{gathered} \text { 迫 } \\ \text { 合 } \end{gathered}$	$\begin{aligned} & \text { 道 } \end{aligned}$	$\begin{aligned} & \text { d } \\ & \text { H } \\ & \text {. } \end{aligned}$	$\begin{aligned} & \text { 邑 } \\ & \text { a } \end{aligned}$	$\begin{aligned} & \text { d } \\ & \frac{1}{d} \end{aligned}$		Remarks，
11	Cold Storage Co．．．．．．．．．．．．．．	509－13 N．Front street．．．．．．．．．．．．．	Mar．6．．．．．．．．	Gem ．．．．．．	．．．．．．			．．．．．．		1	．．．．．．		1	
11	Felton，W．8．\＆Co．．．．．．．．．．．	431－35 St．John street．．．．．．．．．．．．．．．	Jan．10．．．．．．．．	Crown ．．．			1	．．．			．．．．．．		1	
11	Frey，William．．．．．．．．．．．．．．．．．	205 Willow street．．．．．．．．．．．．．．．．．．．	Sept．9．．．．．．．．	Crown ．．．		1			．．．．．			．	1	
11	Haggerty，F．．．．．．．．．．．．．．．．．．	s31－35 N．Third street．．．．．．．．．．．．．	Sept．9．．．．．．．．．	Crown．．．．			1	．\cdot	1	\cdots			2	
11	Hawkins，Wm．\＆Co ．．．．．．．	206 Willow street．．．．．．．．．．．．．．．．．．．．	Nov．10．．．．．．．．．	Crown ．．．			1	．	．．．．．．				1	
11	Peirson \＆Mitchell ．．．．．．．．．	W．s．New Market N．of Noble．．	Aug．26．．．．．．．．	Crown ．．．		．．．．		．．．．．．	1			．．．．．．	1	
11	Patterson，J．W．\＆Co．．．．．．	131－35 Margaretta street．．．．．．．．．．l	Sept．12．．．．．．．．	Gem ．．．．．．						1	．．．．．		1	
11	Wright \＆Co．．．．．．．．．．．．．．．．．	N．E．Second \＆Willow sts．．．．．．．	Sept．9．．．．．．．．．	Crown．．．．				1	．．．．．				1	
12	Evans，John R．Son \＆Co．	S．E．cor．York ave．\＆Willow．．．	Sept． 11 ．．．．．．．．	Crown．．．．				1	．－	．．．．．．	．．．．．．		1	
12	O＇Callaghan，B．F．．．．．．．．．．．．．	458－64 N．Third street ．．．．．．．．．．．．．	Sept． 11 ．．．．．．．．	Crown ．．．＇	．．．．	1	1		．．．．．．			．．．．．	2	
12	Peirson，John W．．．．．．．．．．．．．	426 N．Third street．．．．．．．．．．．．．．．．．	Nov． 9 ．．．．．．．．．	Gem．．．．．．					1		．．．．．．		1	
12	Peirson，John W ．．．．．．．．．．．．	426 N．Third strcet．．．．．．．．．．．．．．．．．	Nov． 9 ．．．．．．．．．	Crown ．．．			1						1	
12	Stern，Jacob \＆Son．．．．．．．．．．	428 N．Third street．．．．．．．．．．．．．．．．．	Nov． 9 ．．．．．．．．．	Gem ．．．．．．				．．．．．．	1			．．．．．	1	
12	Stern，Jacob \＆Son．．．．．．．．．．	428 N．Third street ．．．．．．．．．．．．．．．．	Nov． 9 ．．．．．．．．．	Crown ．．．			1						1	
12	Tuftrs，Rudolph \＆Co．．．．．．．	459－61 Dillwyn atreet．	Sept．11．．．．．．．．	Crown ．．．										

New Meters Set－Continued．

$\partial 100)^{\text {ка рәz！！！！！а }}$

	Occupant．	Location．		Name of Moter．	Brze．									Remarks．
宙			$\begin{aligned} & \text { Date when } \\ & \text { Set. } \end{aligned}$		$\begin{gathered} \text { 追 } \\ \text { N } \end{gathered}$		$\begin{aligned} & \text { 吕 } \\ & \text { 号 } \end{aligned}$	$\begin{aligned} & \text { 品 } \\ & \text { ji } \end{aligned}$	$\begin{aligned} & \text { 道 } \\ & \text { ה } \end{aligned}$	$\begin{aligned} & \text { 吕 } \\ & \stackrel{1}{\circ} \end{aligned}$	$\begin{aligned} & \text { di } \\ & \text { İ } \end{aligned}$	$\begin{aligned} & \text { di } \\ & \text { d } \end{aligned}$	－	
13	Hance Bro．\＆White．．．．．．．．	N．W．cor．Marsh＇ll \＆Callowh＇l	Nov．24．．．．．．．．．	Crown．．．．			1						1	
14	Windrim，J．H．，Dir．P．W．	817 N．Broad street．．．．．．．．．．．．．．．．．	Oct． 10.	Nash．．．．．．		1							1	
15	Bement，Miles \＆Co．．．．．．．．．	Twenty－fourth and Wood sts．．．	Aug．28．．．．．．．．．	Gem．．．．．．．							1	．．．	1	On fire attachment．
15	Bement，Miles \＆Co．．．．．．．．．	N．E．cor．21st \＆Callowhill sts．．	Sept．2．．．．．．．．．	Gem							1	．．．．	1	On fire attachment．
15	Fleisher \＆Bro．．．．．．．．．．．．．．．．．	Biddle st．E．of Twenty－fifh st	Aug． 27.	Gem．．．．．．							1	．．．．．	1	On fire attachment．
15	Godshalk，The E．H．Co．．．	S．W．cor．23d \＆Hamilton．．．．．．．．	Sept．4．．．．．．．．．	Gem ．．．．．．							2	．．．．	2	On fire attachment．
15	Godshalk，The E．H．Co．．．	8．W．cor．23d \＆Hamilion sts．．．	Sept．13．．．．．．．．	Gem．．．．．．．						．．．．．	1	．．．．	1	On fire attachment．
15	Kohnle，Joseph ．．．．．．．．．．．．．．	1715－23 Buttonwood street．．．．．．．	Sept．1．．．．．．．．．．	Gem．						．	1	．．．．．．	1	On fire attachment．
15	Phila．\＆Reading R．R．Co．	S．E．cor．16th \＆Penna．ave．．．．	Aug．17．．．．．．．．	Gem．．．．．．．				．．．．．	．．．．	．．．	1	．．．．	1	On fire attachment．
15	Whitney，A．\＆Son．．．．．．．．．．	N．S．Callowhill，16th to 17th sts．	Dec．13．．．．．．．．．	Crown ．．．		．．．．．	1		．．．．．			．．．．．	1	
15	Whitney，A．\＆Son．．．．．．．．．．	N．S．Callowhill，16th to 17th sts．	Dec．13．．．．．．．．．	Gem．．．．．．			．．．．．．	．．．．．	．	1		．．．．．．	1	
16	Dotger，Henry C．．．．．．．．．．．．．	1083 Canal street．．．．．．．．．．．．．．．．．．．	Nov．27．．．．．．．．．	Crown．．．．			1	．．．．	．．．．．			．．．．．．	1	
16	Duncan \＆McElwee．．．．．．．．．	1031 Canal street．．．．．．．．．．．．．．．．．．．．	Oct．27．．．．．．．．．	Crown．．．．		\cdots	1	．．．．				．．．．．	1	
16	Dungan，Hood \＆Co．．．．．．．．	5－11 Canal street．．．．．．．．．．．．．．．．．．．．	Oct． 9 ．．．．．．．．．．．	Gem．．．．．．．		．．．．．			1	．．．	．．．．．．	．．．．．．	1	
16	Holmes，Henry．．．．．．．．．．．．．．	52－58 Canal street．．．．．．．．．．．．．．．．．！	Oct．22．．．．．．．．．	Crump ．．．				1					1	

New Meters Set—Continued．

16
16

Megargee estate．

Schimmel，J． 0.
Schladensky，F．

Schœnherr，John

Schumann，Louis \＆Sons． Schumann，Louis \＆Sons．．

Schutt，F．\＆Son． Simons，B．\＆Son．．．．．．．．．．．．． Baum，George \＆Son．．．．．． Baum，George \＆Son．．．．．．．． Craig，A．H．\＆J． Kindsvater， \mathbf{G} ．
McConnell，J．J

1116－20（＇anal street

 220 Slossman street． 912 N．Delaware avenue 920 Beach street． 150 Laurel street． Rear 915－17 N．Front street．．．．．． 1027 Canal street． 1027 Canal street． 1148 \＆rear Charlotte street． 1005－7 Canal street． 1341－49 Hope street． 1841－49 Hope street． 631 Jefferson street 528 Oxford street． 1214－28 Canal streetLocation．

Name of Meter．	8rze．									
	$\begin{gathered} \text { 丘 } \\ \text { N } \end{gathered}$	$\begin{aligned} & \text { 号 } \\ & \text { が } \end{aligned}$	号	$\begin{aligned} & \text { 迫 } \\ & \text { 号 } \\ & \end{aligned}$	$\begin{aligned} & \text { 送 } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { 追 } \\ & \frac{1}{\alpha} \end{aligned}$	$\begin{aligned} & \text { 送 } \\ & \frac{!}{j} \end{aligned}$	号	\％	Remar
Crown ．．．	．．．．．．	．．．	\ldots	1	．．．．	．．．．			1	
Crown ．．．	．	．．．．	1		．．．．．．	．．．	．．．	．．．．．	1	
Crown ．．．	．．．．	2	．．．．．	．	．．．．．	．．．．．．	．．．．．．	．．．．．．	2	
Gem．．．．．．．		－	．．．．．			1		．．．．．	1	
Crown ．．．		．．．．．	1	．．．．．．				．．．．．	1	
Gem．．．．．．．				．．．．．	．．．．．．	1	．．．		1	
Crown．．．．		1							1	
Crown．．．．		．\cdot		．．．．	1			．．．．．	1	
Crown．．．		．．．．．．	1	．．．．．．	．．．．．	．．．．			1	
Crown．．．．		．．．	1	．．．．．．		．．．．．			1	
Crown．．．．		．．	1	．．．．．					1	
Gem ．．．．．．				．．	1	．．．			1	
Crown ．．．	．．．		\ldots	1	．．．．．．	．．			1	
Gem ．．．．．．			．．．．．．		．．．．．	1	．．．．．．	．．．．．．	1	
Crown ．．．					．．．．．．					

New Meters Set-Continued.

New Meters Set－Continued．

									Size．					
$$	Occupant．	Location．	Date when set．	Name of Meter．	$\begin{aligned} & \text { 占 } \\ & \text { 岡 } \end{aligned}$	$\begin{aligned} & \text { 追 } \\ & \text { が } \end{aligned}$		$\frac{\stackrel{⿺}{j}}{\square}$		$\begin{gathered} \text { di } \\ \text { of } \end{gathered}$	$\begin{aligned} & \text { 送 } \\ & \text { 号 } \end{aligned}$	$\begin{aligned} & \text { did } \\ & \text { g } \end{aligned}$	$\underset{\stackrel{1}{0}}{\stackrel{1}{0}}$	Remarks．
19	Finkenaur，T．．．．．．．．．．．．．．．．．	1714－16 Germantown ave．．．．．．．．．	April 7．．．．．．．．．	Crown ．．．		1	．．．．．		．．．．．	．．．．．			2	
19	Foerderer，F．．．．．．．．．．．．．．．．．．	1712－16 Randolph st．．．．．．．．．．．．．．．．	Oct．22．．．．．．．．．	Crown				1				．．．．．．	1	
19	French，II．．．．．．．．．．．．．．．．．．．．．．	N．W．Third and Cumberland st．	Nov．30．．．．．．．．．	Crown ．．．			1						1	
19	Harvey，G．．．．．．．．．．．．．．．．．．．．．	S．W．Fifth and Columbia ave．．．．	Jan．24．．．．．．．．．	Gem						1	1	．．．．	2	4－in．meter on fire attach－
19	Harvey，J．．．．．．．．．．．．．．．．．．．．．．．	S．E．Randolph and Columbla av	Feb．3．．．．．．．．．．．	Crown ．			1		1			．．．	2	men
19	Illingsworth，Chas．．．．．．．．．．	N．W．Mascher and Columbia av	Nov．16．．．．．．．．．	Gem ．．．．．．					1			．	1	
19	Illingsworth，Chas．．．．．．．．．．	N．W．Mascher and Columbia av	Nov．16．．．．．．．．．	Crown ．．．			1		．．．．．．	．．．．．．		．．．．．．	1	
19	Loughrey \＆Brown．．．．．．．．．	2309－13 N．Seventh st．．．．．．．．．．．．．．．	March 4．．．．．．．	Crown ．．．	1	．．．			．	．\cdot		．．．	1	
19	McNeely \＆Co．．．．．．．．．．．．．．．．．	Randolph st．8．of Montgom＇y av	April 9．．．．．．．．．	Gem ．．．．．．．				．．．．．．		\cdots	1	．．．．．	1	On fire attachment．
19	Merchants＇Elect．Lt．Co．．．	2217－23 Hope st．．．．．．．．．．．．．．．．．．．．．．．．	Feb．10．．．．．．．．．	Crown ．．．					1				1	
19	Reincke，II．．．．．．．．．．．．．．．．．．．．	E．S．Randolph S．of Columbia av	Oct．13．．．．．．．．．	Gem ．．．．．．．				．．．．	1	．\cdot	．．．．．	．．．．．	1	
20	Fenlin，John M．．．．．．．．．．．．．．	1719－29 Sisty st．．．．．．．．．．．．．．．．．．．．．．．	Sept．18．．．．．．．．	Crown ．．．			1	．．．	1	．．．		．．．	2	
20	Gerlach \＆Frits．．．．．．．．．．．．．．．	1240 N．Ninth st．．．．．．．．．．．．．．．．．．．．．．	Feb， 4	Cr		1	．．．．．	．．．．．	．．．．．．	．．．．			1	
20	Girard Avenue Theatre．．．．	Marshall and Girard ave．．．．．．．．．．	June 12．．．．．．．．．	Gem ．．．．．．．		．．．．		．．．	1		．．．．．	．．	1	
20	North western Ice M fg Co．	W．S．Broad N．of Columblajav．．．）	Aug．18．．．．．．．．．	Crown ．．					1				1	

New Meters Set-Continued.

New Meters Set－Continued．

	Occupant．	Location．	Date when Set．	Name of Meter．	SizE									Remarks．
家					$\begin{aligned} & \text { 送 } \\ & \text { n } \end{aligned}$	就		$\begin{aligned} & \text { 苛 } \\ & \text { 号 } \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { d } \\ & \text { d } \end{aligned}$	$\begin{aligned} & \text { 感 } \\ & \text { d } \end{aligned}$		守	或	
25	Bridesburg Mfg Co．．．．．．．．．．．	N．E．c．Richmond and Franklin	Sept．14．．．．．．．．．	Gem．．．．．．		．．．．．	．．．．．．			．．．．．	1	\cdots	1	On fire attachment．：
25	Forderer，Robert H．．．．．．．．．．．	Kear 3971 Frankford ave．．．．．．．．．．	Dec．27．．．．．．．．．	Gem．．．．．．．		．．．．．	．．．．．．			．．．．．	2		2	
26	A merican Sew＇g Mach．Co．．．	S．W．c．20th and Washington av．	Sept．8．．．．．．．．．．	Gem．．．．．．				\ldots	\ldots	．．．．．	1	\cdots	1	On fire attachment．
26	Camplell，Geo．W．．．．．．．．．．．．	S．E．cor．21st \＆Wgrhington av	Nov．6．．．．．．．．．．	Crown．．．．		．．．．．．	1	．．．．					1	
26	Harrison Bros．\＆Co．．．．．．．．．	35th \＆Grays Ferry Road．．．．．．．．	Oct．19．．．．．．．．	Gem ．．．．．．							1		1	
26	Harrison Bros．\＆Co．．．．．．．．．	35th \＆Grays Ferry Road．．．．．．．．．	Oct． 20 ．．．．．．．．．	Crown					1	－\cdot			1	
26	Woodward，Jas．S．．．．．．．．．．．	S．E．cor．16th \＆Reed streets．．．	May 7．．．．．．．．．．	Gem ．．．．．．			．．．．．．		1				1	
26	Woodward，Jas．S．．．．．．．．．．．I	S．E．cor． 161 h \＆Reed streets．．．．	May 7．．．．．．．．．．	Crown．．．．	1	1			．．．．．．				2	
27	Baltimore \＆Ohio R．R．Co．	60th st．\＆Woodland ave．．．．．．．．．．	April 28．．．．．．．．	Gem ．．．．．．			\cdots			．．．．．	1	．	1	
27	Gray，Wm．\＆Sons．．．．．．．．．．．	203 8．Thirtieth street．．．．．．．．．．．．．	Nov．13．．．．．．．．．	Gem					1	．．．		．．．．．	1	
27	New Phila．Market Co．．．．．．	30th \＆Market streeta．．．．．．．．．．．．．	Jan．8．．．．．．．．．．．	Gem ．．．．．．		．．．．．	．．．．．．	．．．．．	．．．．．	1			1	
27	New Phila．Market Co．．．．	30th \＆Market strcets．．．．．．．．．．．．．	June 27 ．．．．．．．．	Gem ．．．．．．			．．．．．	．．．	．．．．．	1			1	
27	Powelton Elect＇c Light Co	43d \＆Media Railroad．．．．．．．．．．．．．．	Dec．2．．．．．．．．．．	Crow		1	．．．．．						1	
28	Bremmer ．．．．．．．．．．．．．．．．．．．．．．．	8248 Germantown avenue．．．．．．．．．	Feb．26．．．．．．．．．	Gem ．．．．．．			．．．．．．	．．．．．．	1				1	
28	Dingee Brick Works．．．．．．．	N．E．cor．26th \＆Hagert ats．．．．．	Feb．27．．．．．．．．．	Crown ．．．		1							1	

New Meters Set-Continued.

New Meters Set-Continued.

-
\bullet

APPENDIX E.

REPORT

ON THE

Operations of the Constraction and Repair Shop DURING 1891.

Twelfth and Reed Streets, Philadelphia, January 20, 1892.

John L. Ogden,
Chief of Bureau.

SIR:-I respectfully herewith submit the annual report of the operations of the Construction and Repair Shop for the year ending December 31, 1891.

> Respectfully, JAMES H. DEAN, Superintendent of Shop.
Merchandise. Dr.
To Stock on hand January 1, 1891 \$19,273 86
Steel 61877
Lumber 1,958 57
Paints, brushes, etc 7575
Oil and tallow 13064
Chandlery 19740
Machinery 2,859 55
Miscellaneous 2,019 63
Coal 96903
Gum goods 3,467 82
Brase fittings 22858
Lead coating 51124
Iron castings 23,971 62
Wrought iron 1,480 27
Bolts and nuta. 1,646 60
Hardware 69319
Brass castings 6,743 43
Wages 28,833 91
\$95,679 86

Faimmount Pumping Station.
Machinery.. \$343 85
Buildings and grounds.. 5574 39959
Spring Garden Pumping Etation.
Machinery \$2,415 85
Boilers. 23170
Buildings and grounds. 50414
Belmont Pumping Station.
Machinery $\$ 31523$
Boilers 15554
Buildings and grounds. 1607
3,151 69
Frankford Pumping Station.
Machinery \$1,234 84Boilers1160
1,24644
Roxborough Pumping Station.
Machinery. \$213 89
Boilers 19924
289
Mount Arry Pumping Station.
Machinery $\$ 14508$
Boilers1212
15720
Chestnut Hill Pumping Station.
Machinery $\$ 2701$
2701
Old metals \$1,290 17
Ferrules4555
General buildings and grounds. 44494
Main office 4688
Meters 32370
Fixed patterns 7395
Machinery 92156
Construction and repair shop 1,330 14
Distribution 1,536 50
$\$ 85,68026$
Stock on hand January 1, 1892 20,416 56
Cr. \$106,096 82
Dr. December 31, 1891 95,679 86
Bal. to Cr \$10,416 96

Articles Delivered to Purveyors Districts，Works，etc．，1891－Continued．

Districts．	Fire Hydrants．		KEYs．			Chisels．					Pluas．					$\begin{aligned} & \text { \$0 } \\ & \text { 足 } \\ & \text { " } \end{aligned}$	Hand Gouges．		
	$\stackrel{+}{\dot{\circ}}$	$\begin{aligned} & \text { فi } \\ & \dot{\circ} \\ & \text { B } \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\rightharpoonup}{3} \end{aligned}$	$\begin{aligned} & \text { S } \\ & \text { H } \\ & \text { d } \\ & \text { D } \\ & \text { D } \end{aligned}$	Plug Monkey．	葆		Handle Dia Pointa．	$\begin{aligned} & \text { \$ } \\ & \text { \$ } \\ & \text { ず } \\ & \text { \& } \\ & \text { م } \end{aligned}$	高	$\begin{aligned} & \mathbf{8} \\ & 8 \\ & \hline \end{aligned}$	宫							
First ．．．	44	98	2	5	72	96	48	．．．	．．．．	．．．．．	182	．．．．．．	131	．		8	．．．．．．	．．．．．．	．．．．
Second ．．．	21	106	．．．．．．		\cdots	12	．．．．．		．．．．．	12	178	．．．．．．	276	．		6	．．．．．．	．．．．．	．．．．．．．．
Third．．	56	168	．．．．．．							．．．．．．	246	24	108	3		4	．．．．．	．．．．．．	．．．．．．．．．
Fourth．．．	21	125	．．．．．		36	80	12	6	86	．．．．．．	285	．．．．．	134	．		10	12	．．．．．．	．．．．．．．．．
Fith．．	5	25	．．．．．．		－					．						1	．．．．．	．．．．．	．．．．．．．．．
Sixth ．．	80	81	．．．．．		．．．．．．．．	48	．．．．．．	24	24	．．．				．．．．．．		2	．．．．．	．．．．．．	．．．．．．．．
Works ．．	．．．．．．．．．		\cdots		．．．．	．．．．．．．．	．．．．．				．．．．．．		－					．．．．．．	254
Total．．．	177	598	2	5	108	186	60	30	60	12	791	24	649	3	．．．	26	12	．．．．．．	254

List of Articles-Continued.

Stop Cocks，Fire Hydrants，etc．，delivered from Department Construction and Repair Shop to Purveyor＇s Districts，Works，etc．，during the Year 1891.

DISTRICT8	Stop Cocks．													Stop Screws．							$\begin{gathered} \text { STOP Boxes } \\ \text { ARD } \\ \text { RISERS. } \end{gathered}$	
	迢	® 㐭 0		$\begin{aligned} & \text { à } \\ & \text { 品 } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 翤 } \\ & \text { 足 } \\ & \text { 心 } \end{aligned}$	$\begin{aligned} & \text { di } \\ & \text { 品 } \\ & \text { 心n } \end{aligned}$	宮	$\begin{aligned} & \text { 品 } \\ & \text { 压 } \\ & \text { 导 } \\ & \text { 家 } \end{aligned}$					48－inch Rotary．	$\begin{aligned} & \text { 兑 } \\ & \text { 是 } \end{aligned}$	$\begin{aligned} & \text { 迫 } \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \text { 追 } \\ & \text { 号 } \\ & \text { 이 } \end{aligned}$	$\begin{aligned} & \text { d } \\ & \text { d } \\ & \text { ヘ19 } \end{aligned}$	$\begin{aligned} & \text { 』 } \\ & \text { d } \\ & \text { 品 } \end{aligned}$	$\begin{aligned} & \text { 邑 } \\ & \text { 日 } \\ & \text { \& } \end{aligned}$	送 吕 \＆	¢	宮
First．．．	．．．．．．	215	28	22	7	5	－	．．．．．	．．．．．	2	．．．．．	．．．．．．	．．．．．．		．．．．．	．．．．．	．．．．．．	．．．．．	．．．．．	．．．．．	812	270
Second ．．．	7	208	8	24	10	2	．．．．	2	．	－	．．．．．	．．．．．．	．．．	12	\ldots	．．．．．	．．		．－	．．．．．	868	207
Third ．．	5	247	．．	2	9	．			．．．．．．	．．．．			．．．．．．	24	．						485	118
Fourth．．		180	．．．．	15	8	．．．．．	6	2	2	4	7	2	2	．．．	．．．．．	．．．		．．．		．．．	812	108
Fith．．．．．．．o．．．	4	58	．．．．．．	2	2				．．．．．．	．．．．．．	．．．．．．	．．．．．．	．．．．．．	6						．．．	78	72
Sixth．．	6	161	．．．．．	4	14	1		3		．．．	．．．．．．		．．．．．．								248	．．．．
Works ．．								．．．	．．．．．	．．．．．．											．．．．．．．．．	．．．
	22	1，069	28	69	50	8	6	7	2	6	7	2	2	42	．．．．．．					．．．	1，798	775

Stop Cocks, etc-Continued.

INVENTORY, JANUARY 1, 1892.

7 No. 1 fire hydrants, at $\$ 2925$. . $\$ 20475$
40 No. 2 fire hydrants, at $\$ 37$ 00....................... 1,480 00
25 4-inch stops, at $1300 \ldots \ldots \ldots \ldots \ldots \ldots . .$.
12 8-inch stops, at $2400 \ldots \ldots \ldots \ldots \ldots \ldots \ldots .$.
710 -inch stops, at $3100 \ldots \ldots \ldots \ldots$.
312 -inch stops, at $3700 . \ldots \ldots$.
4 16-inch stops, at $6000 \ldots$.
136 -inch stops, at 30000. . 30000
Finished parts of stop cocks................................... 1,283 46
$\$ 4,44921$
2 48-inch rotary valves at $\$ 66500$...................... $\$ 1,83000$
Finished parts of rotary valves............................... 81130
1,64130
Unfinished parts of fire hydrants........... \$1,965 18
Labor on .. " ".......................... 5200
2,017 18
Unfinished parts of stop cocks................................ \$868 02
Labor on " " 4000
90802
Unfinished parts of rotary valves........................... \$30 90
Labor on " " ".......................... 8300
11390

$1,051 \quad 00$
$\$ 10,18061$
630 -inch stop screws, O. S., at $\$ 1025 \ldots$. . $\$ 6150$
536 -inch stop screws, O. S., at 1200. . 6000
134 Socket screws, at $175 \ldots \ldots \ldots . .123500$
46 4-inch O. S. spindles, at 150. . 6900
32 Barton stop screws, at 450.
2 Barton bonnets and screws, at $800 \quad 1600$
23 Plug screws, at 05............. 115

138 6-inch gum valves, at \$4. $\$ 55200$
21 valve rods, at 40 cents 840
34 hoe heads for fire irons, at $\$ 150$. 5100
$\$ 1,66801$
$\$ 14,30124$
2,360 pounds white (non-shrinking) metal, at 24 cents $\$ 56640$
3,041 pounds finished brass castings, at 20 cents. 60820
17,551 pounds unfinished brass castings, at 13 conts.. 2,281 63
9,953 pounds iron castings at 2 d cents. 21150
34,100 pounds iron castings, at $2_{1}{ }^{3}{ }^{3}$ B 80817
4,609 pounds cast steel, at 8 cents. 36872
623 pounds cast steel, for tools, at 15 cents. 9345
259 ponnds shear steel, at 8 cents. 2312
122 pounds spring steel, at $3 \frac{1}{1}$ cents. 427
1,232 pounds machinery steel, at 3 cents 3774
$\$ 5,00320$
Hardware $\$ 32093$
Bolts and nuts. 47915
Oil and tallow. 650
Chandlery 805
Paints, oil, brushes, \&c. 145
Lumber. 29604

ARTICLES MANUFACTURED DURING 1891

102 No. 1 fire hydrants, at $\$ 2925$ $\$ 2,98350$
6.52 No. 2 fire hydrants, at 3700. 24,124 00
1,099 6-inch stop cocks, at 1500 16,485 00
6110 -inch stop cocks, at 3100 1,891 00
2112 -inch stop cocks, at 3700 77700
616 -inch stop cocks, at 6000 36000
320 -inch stop cocks, at 9500 28500
130 -inch stop cocks, at 19000 19000
936 -inch stop cocks, at 30000 2,700 00
620 -inch rotary stop valves, at $\$ 26500$. 1,590 00
248 -inch rotary stop valves, at 66500 1,33000
436 -inch rotary stop valves, at 52500 2,100 00
630 -inch rotary stop valves, at 2,310 00
76 4-inch stop screws, at $\$ 225$ 17100
50 6-inch stop screws, at 250 12500
5610 -inch stop screws, at 450 25200
2012 -inch stop screws, at $\$ 500$. $\$ 10000$
816 -inch stop screws, at 600 4800
320 -inch stop screws, at 650 1950
6 30-inch stop screws, O. S., at $\$ 1025$. 6150
536 -inch stop screws, O.S., at 1200 6000
24 4-inch socket screws, at $\$ 150$ 3600
9 -inch socket screws, at 175 1575
8 Barton stop screws, at 325 2600
8 4-inch iron bands, at 200 1600
290 6-inch iron bands, at 215. 62350
298 -inch iron bands, at 350 9250
510 -inch iron bands, at 500 2500
4812 -inch iron bands, at 600 28800
1216 -inch iron bands, at 750 9000
2420 -inch iron bands, at 1050 25200
3230 -inch iron bands, at 1500 48000
836 -inch iron bands, at 1700 13600
3648 -inch iron bands, at 2000 72000
62 pairs w. i. monkey legs, at $\$ 325$ 20150
130 pairs c. i. monkey legs, at 150 19500
19 cross heads and nuts, at $\$ 150$ 2850
134 spindles, at $\$ 350$. 46900
1,267 wooden plugs, at 50 cents. 63350
24 iron plugs, at 50 cents. 1200
749 brass plugs, at 50 cents. 37450
184 flat chisels, at 35 cents. 6440
103 gouges, at 50 cents. 5150
169 hand diamond points, at 35 cents. 5915
8 handled diamond points, at 90 cents. 720
59 pipe cutters, at 60 cents. 3540
12 cape chisels, at 35 cents 420
21 lead pots, at $\$ 262$ 550%
3 reducing cape, at $\$ 106$ 300
$1,177 \mathrm{~s}$. hoooks, at 75 cents per dozen 7350
715 clevises, at 75 cents per dozen. 4500
4 hook bolts, at 15 cents. 60
18 mandrils, at $\$ 125$ 2250
53 sets caulking tools, at $\$ 250$ 13250°
4 gasket irons, at 60 cents 240
21 stub end strapa, at $\$ 850$ 19950
1,744 wooden stop boxes, at $\$ 250$ $4,360 \quad 0$
787 wooden stop boxes risers, at 35 cents. 27545
22 wrenches, at 50 cents. 1100
82 wedges, at 35 cents. 2870
3 furnaces, at $\$ 1700$ 5100

298

8 f. h. reducers, at $\$ 100$ $\$ 800$
$2 \pi 9$ eye bolts, at 40 cents. 11160
6 caulking hammers, at $\$ 100$ 600
5 hydrant keys, at \$2 25 1125
110 plug monkey keys, at 25 cents 2750
12 plug risers, at $\$ 200$. 2400
54 tail clamps, at 75 cents. 4050
2 stop keys, at $\$ 525$ 1050
\$67,282 62

APPENDIX F.

REPORT OF JOHN E. CODMAN,

In Charge of Hydrographic Work.

Bureau of Water.
Philadelphia, January 18, 1892.
John L. Ogden, Chief, Burean of Water.
SIR :-The following report of hydrographic work and data collected during the yoar 1891, in connection with the investigations of the sources for a future water supply, is respectfully submitted.

Stream flow observations on the Perkiomen, Neshaminy and Tohickon streams have been continued, completing eight years continuous records.

Rain-fall observations with the three automatic gauges have also been continued, completing nine years continuous records. Records of this kind have been made by the Department of Public Works in the City of New York on the Croton river for over twenty years, and by the City of Boston on the Sudbury river for over sixteen years. A comparison of the data collected is made in Table VII.

The average yearly flow of the Perkiomen in comparison with the rain-fall is three per cent. more; of the Neshaminy, one per cent. less; and of the Tohickon, ten per cent. more than either the Croton or Sudbury. The average rain-fall on the Pennsylvania streams is about five inches greater.

The distribution of the rain-fall throughout the year, with the exception of the months of April and May, was nearly normal. The average for each month on the water shed of the Perkiomen stream was 4.20 inches, on the Neshaminy 4.10 inches, and on the Tohickon 4.29 inches. The greatest monthly rain-fall occurred in August, 7.74 inches. The least monthly rain-fall occurred in May, 2.28 inches.

The rain-fall for the eastern counties of Pennsylvania was 50.07 inches, being 1.50 inches above the average for the past nine years. No very heavy or long continued storms occurred, and only nine or ten showers, in which the rate for short periods of time exceeded one inch per hour, or more. Very little snow fell during the year, the total amount not exceeding ten inches in depth, and remaining on the ground but a short time after each storm.

In the results obtained the three Automatic Rain Gauges in use by the Bureau are practical and satisfactory. With the exception of a local cause, that can be corrected, these record a diagram clearly, showing the beginning, ending, intensity, and the total amount of precipitation.

The total precipitation registered by the Automatic Gauge at Thirty-second and Spruce streets, Philadelphia, for the year 1891 was 39.99 inches. For the purpose of correcting errors due to location, size of collector, and elevation above the surface of the ground, comparative observations have been made on this gauge. The locality selected is particularly favorable for obtaining this data, and therefore the information obtained is believed to be correct. The diameter of the collector of this gauge is $22 \frac{8}{8}$ inches, which is much larger than is commonly used. Some doubts were expressed at first about the accuracy of the records obtained from so large a collector. Reliable information on this point not being accessible, gauges of different diameters were placed in close proximity to the large one, and at the same elevation, so that conditions relating to locality should affect all alike.

Observations upon these have been made continuously for
the past three years. The results show that with an average yearly rain-fall of forty-five inches the variation between the smallest and largest is lesss than three-quarters of one per cent., and also show that it makes no practical difference whether the collector is twenty-four inches in diameter or only two inches. During 1888 it was found that the Automatic Gauge on the roof of the small building did not collect as much as one placed upon or near the surface of the ground. During 1889, 1890 and 1891 observations were made with a collector twenty inches from the ground. The result showed that about 13 per cent. more was collected in the ground gauge. In order to determine whether this discrepancy was due to the difference in elevation above the surface of the ground or was caused by local conditions, a series of collectors were suspended on a mast at elevations of 50 feet, 25 feet, 15 feet, 10 feet, and 5 feet above the surface of the ground. Small lead pipes leading from each collector conveyed the water to separate vessels. The drawing in elevation shows the relative position of the collectors on the mast, and the drawing in plan, their relative position to the points of the compass. During the year observations have been made at the end of each rain storm, noting the general direction of the wind and the amount of rain collected.

The results (tabulated in Table V) have been compared with those obtained from the gauge on the ground and the Automatic Gauge. There is no material variation in the amount for each month or for the year between the gauges on the mast and the one on the ground, yet the variation in single storms will, at times, amount to as much as 0.30 inch, according to the direction and velocity of the wind. This variation it was soon found was caused by the mast producing counter currents of air. Although the mast was only eight inches in diameter and the collectors were suspended at a distance of five feet from it, yet those on the windward side collected more than those on the lee side. The wind in the majority of storms had an easterly direction, and the gauges
on the northeast and southeast side of the mast collected the greater quantity. Comparing the results obtained on the mast with those obtained from the gauge on the ground, no material difference is found. A gauge at an elevation of fifty feet or less above the surface of the ground will collect the same amount as one on the ground, provided both are situated in a position not affected by counter currents of air. The 13 per cent. difference observed between the Automatic Gauge and those on the mast or the one on the ground, is due to the roof of the building on which the collector is fastened producing a current of air which carries a portion of the rain upward and over the collector. This is found to be nearly a constant quantity, and it can be added to the amount collected by the Automatic Gauge. The results of the observations upon this gauge are also confirmed by the records of the Automatic Gauges at the Forks of the Neshaminy and Spring Mount.

At both places comparisons have been made with gauges upon the ground, the difference being about 11 per cent. in a total rain fall for the year of 55 inches. The difference is slightly less than that shown by the Philadelphia gauge, and is accounted for from these facts: first, that the roofs have a much greater pitch ; second, the distance from the roof to the edge of the collector is greater ; third, the upward current of air produced by the roof has less force, consequently so much of the rain cannot be carried over the collector.

The automatic gauge in this city recorded twenty-seven storms in which the rate exceeded 0.25 inch per hour, and one hundred and thirty-two days in which the precipitation exceeded 0.01 of an inch. The greatest amount of rain recorded in a single storm was on Septeraber 5th and 6th, when 1.75 inches fell in ten hours. The greatest amount for a short period of time was on April 16th, when 0.60 of an inch fell in 12 minutes, or at the rate of 3 inches per hour.

The amount of rain recorded at stations outside of the City was from thirteen to sixty-eight per cent. more than was re-
corded by either the Bureau or Signal Service gauges. The automatic gauge at the Forks of the Neshaminy recorded twenty-two rain storms in which the rate exceeded 0.25 of an inch per hour. The greatest amount of rain recorded in a single storm was on September 5th and 6th, when 2.43 of an inch fell in twelve hours and fifteen minutes. The greatest amount for a short period of time was during a shower on July 24th, when 0.70 of an inch fell in 24 minutes, or at the rate of 1.75 per hour.

The automatic gauge at Spring Mount, P. \& R. R. R., recorded twenty-seven rain storms in which the rate exceeded 0.25 of an inch per hour. The greatest amount recorded in a single storm was on August 24th, when 2.80 inches fell in twenty-four hours. The greatest amount for a short period of time was during the same storm, when 0.66 inch fell in twen-ty-four minutes, or at the rate of 1.65 inches per hour. The greatest amount collected at any of the Stations was 64.00 inches at West Chester.

The various tables of data collected during the year relating to rain-fall and stream flow are continued as in former years.

Table I shows the monthly and total precipitation for 1891 compared with the United States Signal Service, and the average comparison for the past nine years, at twenty-one differerent locations in Eastern Pennsylvania.

Tables II, III and IV are compiled from the records of the automatic gauges and show the number, amount and intensity of all rainstorms during the year that exceed 0.25 of an inch per hour.

Table V. shows the amount of rain collected each month since March at different elevations above the surface of the ground, the number of times rain fell each month, and the general direction of the wind during the time rain was falling.

The average daily flow of the Perkiomen for the past eight years was $190,576,912$ gallons, the year ending September 30 . The flow of the same stream for the year 1891 was $186,501,174$,
or 3 per cent less than the average of the past eight years. The rain-fall on the water shed was 0.25 of an inch less than the average. The flow of the Perkiomen from September 30, 1890, to October 1, 1891, was over fifty millions of gallons per day less than the flow for the year ending September 30, 1840. The average per cent. of rain-fall flowing in the Perkiomen during the past eight years was 52.4 , equivalent to 26.09 inches of rain-fall over the whole water shed, or 1.94 cubic feet per second per square mile.

The average daily flow of the Neshaminy for the past eight years was $163,620,429$ gallons. The daily flow of the same stream for the year 1891 was $162,874,703$, or one-half of one per cent. less than the average of the past eight years. The rain-fall on the water shed was 0.92 of an inch less than the average. The flow of the Neshaminy from September 30, 1890, to October 1, 1891, was over ten millions of gallons per day less than the flow for the year ending September 30, 1890. The average per cent. of rain-fall flowing in the Neshaminy for the past eight years was 48.8 , equivalent to 24.44 inches of rain-fall over the whole water shed, or 1.82 cubic feet per second per square mile.

The average daily flow of the Tohickon for the past eight years was $154,123,630$ gallons, the year ending September 30. The flow of the same stream for the year 1891 was $147,633,844$ gallons, or five per cent. less than the average of the past eight years. The rain-fall on the water shed was one inch less than the average. The flow of the Tohickon from September 30,1890 , to October 1, 1891, was over fifteen millions of gallons per day less than the flow for the year ending September 30,1890 . The average per cent. of rain fall flowing in the Tohickon for the past eight years was 60.0 , equivalent to 31.48 inches of rain-fall over the whole water shed, or 2.33 .5 cubic feet per second per square mile.

The yearly flow of these streams gradually increased, with an increasing yearly rain-fall from 1885 to a maximum in 1889, the increase in flow being in 1889 seventy per cent., the
increase in rain-fall being sixty per cent. above those of 1885 .
Two diagrams illustrating the rapid rise in the Tohickon and Neshaminy streams have been made from the record of the automatic gauges on August 24. This storm was confined to a comparatively small area of country. The rain-fall at Doylestown-nearly in the centre of the storm—was 5.25 inches in less than 24 hours.

The storm passing in an easterly direction over the lower valley of the Tohickon and the upper valley of the Neshaminy, the highest point recorded by the Neshaminy gauge occurred some six hours after that on the Tohickon.

The bridge at the Tohickon and the float-box at the Neshaminy were both carried away by the sudden rise of the streams. Repairs were made at once without interfering with the observations. All the instruments belonging to the Bureau used in making observations during the year are in good condition.

Observations up on the Tohickon.Weir have been made whenever practicable and a correction made in the low stream flow.

The records kept at Fairmount of the amount of water flowing over the flash-boards at Fairmount dam during 1891, showed a total of 64 feet 10 inches, being 23 feet 7 inches less than the records of 1890 , and 131 feet less than the records of 1889 . The average rain-fall in the Schuylkill valley for 1890 was 50.07 inches or 1.14 inches, more than the average for 1890 .

The computed flow from the above records give 36 per cent of the total rain-fall, or $1,512,400,000$ gallons per day as the average flow of the Schuylkill river for the year 1891.

The following named persons have been engaged as observers and rodmen during the entire year:

John G. Hilsman, rodman and gauge observer, Rush Valley P. 0 .

George W. Wood, rodman and gauge observer, Spring Mount, Pa.
R. G. Stover, gauge observer, Point Pleasant, Pa.

Dr. George M. Grim, gauge observer, Ottsville.

George Lowder, gauge observer, Smith's Corner.
Dr. J. A. Roth, gauge observer, Seisholtzville.
A. W. Walton, gauge observer, Doylestown.
H. L. Shull, gauge observer, Lansdale.

The Bureau is indebted to the following persons who have kindly furnished rain-fall records:

Mr. Thomas MacKellar, Germantown, Philadelphia.
Mr. J. L. Heacock, Quakertown, Pa.
L. M. Dey, U. S. Signal Service.
T. F. Townsend, U. S. Signal Service.

Mr. Benjamin Shoemaker, Pennsylvania Hospital, Phila.
Mr. E. F. Smith, Chief Engineer of Canals, Reading, Pa.
Mr. Thomas J. Beans, Moorestown, N. J.
Dr. Charles Moore, Pottstown, Pa.
Professor J. W. Moore, Lafayette College, Easton, Pa.
Professor Seldon, Lafayette College, Easton, Pa.
During 1891 all observations on rain-fall were taken uniformly in accordance with the instructions given at the beginning of the year.

Respectfully,
JOHN E. CODMAN, In C'harge of Bydrographic Work.

$\square]$	S,							
ES.			NESHAMINY SERIES.					
Corner.	Point Pleasant.		Lanspalk		Forks of Nrghaminy.		Doylestown.	
	119.5		350		143		400	
			$\begin{aligned} & \text { 晜 } \\ & \text { 亮 } \\ & \hline \end{aligned}$					
1.1.99	6.53	$+2.94$	6.04	: 2.45	6.11	$+2.52$	6.29	$+2.70$
-0.20	4.67	-0.04	4.43 ,	-0.28	4.50	-0.21	4.89	+0.18
1-0.47	5.08	$+0.66$	4.67	$+0.25$	4.51	$+0.09$	5.55	+1.13
-0.59	1.70	-0.64	2.12	-0.22	1.65	-0.69	1.92	-0 42
$+1.07$	2.94	+1.20	2.66	+0.92	2.66	+0.92	3.43	+1.69
-0.03	3.51	$+1.00$	2.90	$+0.39$	3.83	-1.32	3.66	$+1.15$
-. 2.80	6.94	- 2.29	6.36	$+1.71$	4.44	-0.21	6.30	$+1.65$
- 5.96	9.58	--5.34	6.62	$+2.40$	4.90	- 0.68	8.68	+4.46
-0.61	1.31	-10.59	2.57	-0.67	3.08	-1.18	1.98	+0.08
. 1.11	4.32	-1.75	3.09	- $0.5 \pm$	3.68	- 1.11	4.22	-1.65
- 0.02	1.95	-0.2.)	1.73	- 0.103	2.04	$+0.34$	1.87	$+0.17$
- 0.193	4.86	$+1.05$	3.41	-0.3i	4.88	. 1.10	4.29	$+0.51$
.. 12.65	53.37	$\cdots 15.24$	48.60	+ 8.5	46.28	-8.8.5	53.08	$+14.95$
..........	140	122		121	139
	53.33	47.74	\ldots	49.55	50.69	
.........	134		

TABLE 2.

Rain Storms Exceeding Rate 0.25 Inches Per Hour, as Recorded by the Automatic Rain Gauge at Frederick for the Year 1891.

Date of Observation, 1891.	AUTOMATIC RAIN GAUGE.				
	Total fall.		Maximux Fall.		
	$\begin{gathered} \text { Amount } \\ \text { in. } \\ \text { Inchea. } \end{gathered}$	Duration ${ }^{\text {in }}$ Hr. Min.	Amount in Inchen.	$\begin{aligned} & \text { Duration } \\ & \text { in } \\ & \text { Minutes. } \end{aligned}$	Rate per Hour during Maximum Fall
January 2d, rain and snow............	. 74	23-00	. 20	. 48	. 25
January 11th, rain and snow.........	1.35	20-24	. 20	. 16	. 75
January 22d, rain and snow.	1.08	11-50	. 20	. 36	. 83
February 1st, rain and hall...........	. 47	4-40	. 30	. 76	. 24
February 17th, rain and snow.......	1.16	18-10	. 10	. 08	. 75
March 20th to 23d..........	8.49	74-55	. 40	. 40	. 60
April 11th, shower......................	. 4	8-45	. 15	. 12	.75
May 3d, S. E. rain storm...............	. 97	5-10	. 15	. 16	. 56
June 16th, shower...... 20	$0-12$. 20	. 12	1.00
June 18th, N. E. rain storm..........	. 75	2-10	. 30	. 24	2.75
June 21st, N. E. rain atorm...........	. 30	1-00	. 30	. 60	. 30
July :d, shower.........................	. 40	3-20	. 16	. 24	. 40
July 15th, shower.......................	. 76	2-50	. 35	. 28	. 75
July 16th and 17th, S. E. rain storm.	2.27	16-00	. 30	. 20	. 90
July 24th, showers.......................	. 46	1-20	. 36	86	1.00
July 29 th , S. E. rain storm............	1.98	12-10	. 25	. 15	1.00
August 1st, showers......................	. 27	O-50	. 22	. 24	. 65
August 4th, showers.	1.13	21-05	. 66	. 52	. 76
August 12th, 3 showers................	. 49	1-50	. 19	. 12	. 95
August 15th, 3 showers................	1.01	-40	. 44	. 20	1.82
August 2ist, showers...................	. 39	4-40	. 32	. 22	. 60
August 24th and 25th, rain storm...	2.80	24-00	. 66	. 24	1.65
Auguat 27th, showers...................	. 67	5-42	. 87	. 12	1.85
September 3d, shower..................	. 28	0-15	. 23	. 16	1.15
September ith, N. E. rain storm.....	1.27	6-15	. 67	. 40	1.00
Octoler 20th, N. E. rain storm......	1.39	17-00	. 58	. 86	1.45

TABLE 3.

Rain Storms Exceeding in Rate 0.25 inches per hour, as Recorded by the Automatic Rain Gauge at Forks of Neshaminy, for the year 1891.

Date of Observation, 1891.	AUTOMATIC RAIN GAUGE.				
	Total fall.		Maximum Fall.		
	$\begin{gathered} \text { Amount } \\ \text { in } \\ \text { Inchee. } \end{gathered}$	$\begin{aligned} & \text { Duration } \\ & \text { Hr. Min. } \end{aligned}$	Amount in Inches.		
January 2d, snow and rain...........	0.64	26-15	0.15	28	0.88
January 11th, snow and rain........	1.42	21-55	0.15	20	0.45
January 13th, rain and sleet........	1.21	20-10	0.20	60	0.80
January 22d, rain.......................	1.71	12-45	0.15	24	0.87
February 1st, rain......................	0.48	12-55	0.20	56	0.21
February 17th, rain....................	0.83	10-10	0.20	48	0.25
March 10th, thunder shower.........	0.24	3-00	0.20	82	0.87
March 21st, rain.........................	1.28	24-00	0.20	60	0.20
April 11th, shower......................	0.69	20-00	0.15	12	0.75
May 21st, shower........................	0.36	0-24	0.30	12	1.50
May 22d, shower.........................	0.28	0-25	0.10	8	0.75
June 7th, N. E. rain storm...........	0.94	23-15	0.10	86	0.17
June 17th, N. E. rain storm..........	1.24	15-40	0.55	82	1.03
July 8d, shower..........................	0.53	$9-35$	0.50	12	1.50
July 20th, shower.......................	0.17	0-16	0.17	16	0.61
July 24th, shower.......................	0.88	8-50	0.70	24	1.75
July 29th, S. E. rain storm............	0.75	12-30	0.25	60	0.25
August 1st, shower......................	0.50	4-45	0.25	25	0.00
August 15th, showers...................	0.52	$6-10$	0.15	15	0.50
August 19th, rain storm...............	0.90	8-30	0.20	16	0.75
August ${ }^{2} 3 \mathrm{~d}$ and 24 th, showers.........	1.35	4-15	0.80	48	1.00
Sept. 5th and cith, N. E. rain storm	2.43	12-15	1.05	40	1.57
October 20 , N. E. rain storm...........	1.56	18-00	1.11	80	0.88

TABLE 4.
Rain Storm Exceeding in Rate 0.25 inches per hour as Recorded by the Automatic Rain Gauge at Philadelphia, Pa., for the year 1891.

Date of Obserration, 1891.	AUTOMATIC RAIN GAUGE.				
	Total Fall.		Maximum Fall.		
	Amount in Inches.	$\begin{aligned} & \text { Duration } \\ & \text { in } \\ & \text { Hr. Min. } \end{aligned}$	Amount in Inches.	Duration in Minutes.	Rate per Hourduring Maximum Fall.
January 2d, rain..........................	0.41	6-20	0.20	40	0.80
January 11th, rain.......................	0.86	20-55	0.15	52	0.20
February 9th, rain.......................	0.60	20-40	0.15	32	0.28
February 17th, shower..................	0.86	8-30	0.15	12	0.75
March 10th, rain..........................	0.38	19-15	0.15	82	0.28
March 21st, rain	1.50	26-20	0.30	60	0.30
March 22d, shower......................	0.34	20-35	0.20	20	0.60
April 16th, shower	0.80	3-50	0.60	12	3.00
May 3d, S. E. rain storm..............	0.60	4-10	0.20	60	0.20
June 7th, N. E. rain storm	0.89	16-15	0.15	42	0.2E
June 18th, N. E. rain storm...........	0.70	6-45	0.55	82	1.05
June 19th, N. E. rain storm...........	036	8-30	0.15	20	0.45
June 21st, N. E. rain storm...........	0.71	8-40	0.35	16	1.31
July 3d, shower............................	0.68	1-00	0.28	12	1.40
July 8th and 9th, N. E. rain storm.	1.45	$32-00$	0.10	24	0.25
July 18th, S. E. rain storm.............	0.58	17-20	0.20	12	1.00
July 24th, shower.........................	0.28	1-45	0.20	16	0.75
July 28th and 29th, St E. rain storm	1.76	14-35	0.55	36	0.92
July 30th, shower...................	0.40	$2-40$	0.25	20	0.75
August 2d, shower	1.05	5-40	0.70	44	0.96
August 12th, shower	0.87	3-30	0.60	32	1.12
August 15th, shower.....................	0.51	2-55	0.36	28	0.77
August 23d, shower.....................	0.81	1-50	0.75	82	1.40
Sept. 5th and 6th, N. E. rain storm.	1.75	10-00	0.77	40	1.18
September 7th, shower..................	0.84	2-05	0.14	8	1.05
October 20th, N. E. rain storm.......	1.27	14-20	0.37	20	1.11

TABLE 5.
Table Showing Observations on Rainfall at different Elevations Above the Surface of the Ground.

Month.	Elevation Above the Ground-Ft.						\qquad	Direction of Wind.			
	0	5	10	15	25	50		No. of Observations N. E.	$\begin{gathered} \text { No. of } \\ \text { Observations. } \\ \text { S. E. } \end{gathered}$	No. of Observations S. W.	No. of Observations N. W.
January..........................											
February..................											
March............................											
April............................	2.44	2.34	2.22	2.26	2.34	2.32	6	3	1	1	1
May...............................	1.86	1.57	1.67	1.82	1.72	1.73	10	5	1	2	2
June...............................	2.95	3.02	2.78	2.99	2.90	2.84	8	7	1		
July................................	5.88	5.28	5.71	5.75	5.70	5.53	10	3	4	2	1
August............................	4.99	4.63	4.92	4.88	4.96	4.78	11	1	3	3	4
September	2.65	2.64	2.73	2.70	2.68	2.65	6	2	1	1	2
October...........................	3.05	2.98	8.18	3.37	3.54	3.24	6	4	.-.0.0...........	1	
November	2.38	2.14	2.46	1.98	2.80	2.20	5	2	1	2	
December.........................	4.32	4.47	4.74	4.21	4.56	4.50	7	2	3	1	1
Total	30.52	29.07	30.41	29.96	30.70	29.79	68	29	15	18	11

Gauges at 15 and 25 feet are on the North and East Side of Pole.

TABLE 6.
Comparative Statistics of Watersheds.

Table 7-Average Annual Yield of Sundry Streams October 1 to October 1, 1890-91.

Watersheds.				官产				
Perkiomen at Frederick, eight years........	152.0	50.176	26.092	52.4	69,5.59,853,618	190,576,912	1.9400	0.0366
Neshaminy below Forks, eight years........	139.3	50.085	24.441	48.8	59,715,605,163	163,621,429	1.8175	0.0362
Tohickon, eight years............................	102.2	52.477	31.486	60.9	56 348,776,388	154,123,630	2.3350	0.0445
Sudbury, Mass., sixteen years.................	75.2	45.800	22.670	49.5	29,616,392,000	81,140,800	1.6700	0.0364
Croton, N. Y., serenteen years.................	338.0	45.970	22.760	49.5	135,400,000,000	371,600,000	1.6800	00.365

Table 8-Observed Minimum Stream Flow and Minimum Flow October 1 to October 1, 1890-91.

Stream.	Previously Obs Minimum	RVED W.	Date.	Mnimum Flow, 1891.	Date.
	Cubic feet per 24 hours.			Cubic feet per 24 hours.	
Perkiomen at Frederick	653,184	-	September 4, 1885...... September 28, 1885.... July 23, 1885.............	1,728,000	June 27th.July 28th.July 17th.
Neshaminy below Forks..	108,864			1,226,880	
Tohickon........................	17,280			232,280	

Table 9-Observed Maximum Stream Flow and Maximum Flow October 1 to October 1, 1890-91.

Stream.	Previously Observrd Maximum Flow.	Data	Maximum Flow, 1891.	Data
	Cubic feet per 21 hours.		Cubic feet per 24 hours.	
Perkiomen at Frederick Neshamiuy below Forks. \qquad Tohickon. \qquad	$\begin{array}{r} 458,352,000 \\ 498,268,800 \\ 479,174,400 \end{array}$	$\begin{aligned} & \text { September } 18,1888 \\ & \text { February 11, } 1886 \ldots . . \\ & \text { September 18, 1888... } \end{aligned}$	$\begin{aligned} & 414,961,920 \\ & 283,029,120 \\ & 272,946,240 \end{aligned}$	March 21st. August 24th. August 24th.

TABLE 10.

Yield on Sundry Streams for the year 1891.

$\begin{aligned} & \text { MONTHLY } \\ & \text { YikLD. } \end{aligned}$	Average D	ILY Yizld.
Cubic Feet.	Cubic Feet.	Gallons.
1,871,752,320	60,379,107	451,667,086
1,482,166,080	52,934,503	395,977,580
1,646,809,920	53,122,900	397,386,862
638,962,560	21,298,752	159,325,727
234,472,320	7,563,623	56,579,829
127,586,880	4,252,896	81,813,870
297,069,120	9,582,875	71,684,882
724,127,040	23,355,711	174,712,840
542,082,240	18,069,403	135,168,550
197,320,320	6,366,172	47,622,272
207,489,600	6.916320	51,737,666
1,014,958,080	32,740,5*3	244,916,553
8,984,796,480	24,606,000	184,140,464

$\begin{aligned} & \text { Monthly } \\ & \text { Yigld. } \end{aligned}$	Average D	aily Yield.	$\begin{aligned} & \text { Monthly } \\ & \text { Yikld. } \end{aligned}$	Average D	aily Yiel
Cubic Feet.	Cubic Feet.	Gallons.	Cubic Feet.	Cubic Feet.	Gallons.
1,883,520,000	60,758,709	454,506,707	1,459,002,240	47,004,570	351,618,601
1,452,176,640	51,863,451	387,965,563	1,310,135,040	46,790,537	350,017,522
1,407,447,360	45,401,528	339,626,993	1,194,022,080	38,516,841	288,125,961
479,027,520	15,967,584	119,446,816	373,014,720	12,433,824	93,011,460
104,613,120	3,374,617	25,243,887	66,415,680	2,142,441	16,026,571
80,861,760	2,695,392	20,162,931	44,677,440	1,498,248	11,207,673
107,248,320	8,459,623	25,879,776	217,874,880	7,028,222	52,574,753.
629,968,420	20,322,478	152,022,691	935,910,720	30,190,670	225,841,893
407,531,520	13,884,38	101,618,243	220,302,720	7,343,424	54,932,626
173,525,760	5,597,605	41,872,990	104,699,520	3,377,404	25,261,735
187,388,800	6,246,293	46,725,516	149,973,120	4,999,104	87,396,893
979,050,240	31,582,270	236,251,783	1,015,372,800	32,753,961	245,016,623
7,892,359,360	21,623,000	161,751,271	7,191,400,960	19,302,500	147,384,934

NESELAMINY CRHHOK

Digitized by Google

TOHCKON CRDPK

-
-
-
Digitized by COOgle

APPENDIX G.
 REPORT OF JOHN E. CODMAN,

Chief Dravahtsman.

Bureau of Water

Philadelphia, January 18, 1892.
Mr. John L. Ogden, Chief, Bureau of Water.
SIR:-The following report of work under my charge in the draughting room for the year 1891 is respectfully submitted.

Seventy-five drawings relating to buildings, grounds and reservoirs have been made and recorded. These comprise general drawings and details as follows:

Eleven drawnigs, including specifications showing design, details and construction of a new Boiler House; thirteen drawings, including specifications showing details and construction of five steel boilers ; and one drawing including specification showing details and construction of a brick stack one hundred and fifty feet high, all of which work was for the Spring Garden Pumping Station.

Fifty drawings showing details of machinery, of boilers, of steam engines and pumps, and of air pumps and valves were made for the various pumping stations.

All of these drawings required particular care and attention both in design and detail, as the responsibility for the correctness of the work is placed upon the Draughting Department.

Calculations of the horse power of over three hundred boilers and engines were made from the data furnished by the inspectors.

About seven hundred blue prints were pinted.
Plans are now being prepared showing the alteration of the old building at the Spring Garden Water Works for the new twenty million gallon engine.

By your direction the Chief Draughtsman supervised the construction of the new steel boilers built by the Southwark Foundry and Machine Co. The steel plates were rolled by the Lukens Steel and Iron Co., Coatesville, Penna. The plates, to save time and expense, were inspected at the rolling mill. The test coupons attached to each plate were carefully marked for identification, and also for position of the plate in the boilers, and then forwarded to the Southwark Foundry and Machine Co. to be finished to the required size as per drawing and specification. These were then sent to the Department of Mechanical Engineering of the University of Pennsylvania, where they were tested for elastic limit, elongation and ultimate strength. Copies of the results obtained are given in the following tables. Ten observations of the applied force and elongation were made on each coupon. Diagrams showing graphically the elongation, elastic limit and ultimate strength have been made from these observations. One coupon was cut from each sheet entering into the construction of the boiler. Nine defective sheets were rejected. Seventy-three coupons in all were tested. Tests were also made of the iron used in the construction of the boiler house roof.

The steel plates used in the construction of the boiler for the Mount Airy Pumping Station were made by the Black Diamond Steel Works, Pittsburg, Penna.
The coupons were cut from the plates finished and tested under the supervision of the Chief Draughtsman. Copies of the results are given in the following tables.

The new boilers at the Spring Garden Station were set in brick work to bring the waste heat under and to the front of
the boilers. Drawings have been made to show the manner in which this was done. In the original design the boilers were covered with a non-conducting material, and no brick work setting was required. When the extra cost of setting and the repairs to the brick work are considered, it is extremely doubtful whether there is any saving by this arrangement in the cost of running.

The daily pumpage chart for the report of the Chief Engineer and the stream flow charts for the Hydrographic Report have been prepared as in previous years.

Respectfully,
JOHN E. CODMAN, Chief Draughtsman.

TESTS OF STEEL BOILER PLATE

Made for the Department of Public Works, Bureau of Water, Philadelphia, by the Uaiversity of Pennsylvania, Department of Mechanical Engineering.

Tests of Steel Boiler Palte-Continued.

Teste of Steel Boiler Plate-Continued.

978

Tests of Steel Boiler Plate-Continued.

Tests of Steel Boiler Plate—Continued.

Tests of Steam Boiler Plate-Continued.

H
0

Tests of Steam Boiler Plate—Continued.

媐

Tests of Steel Boiler Plate—Continued.

Tests of Steel Boiler Plate-Continued.

Teats of Steel Boiler Plate—Continued.

Tests of Steel Boiler Plate.-Continued.

Tests of Steel Boiler Plate—Continued.

Tests of Steel Boiler Plate-Continued.

Tests of Steel Boiler Plate—Continued.

Tests of Steel Boiler Plate—Continued.

Tests of Steel Boiler Plate-Continued.

Tests of Steel Boiler: Plate—Continned.

Tests of Steel Boiler Plate—Continued.

Tests of Steel Boiler Plate-Continued.

:Marks	Measuremerts.			Applied load.	StraininPoundsper sq.inch.	Elongation. In eight inches.		Reduction of Area.				Remarics,
	Breadth	Width.	Area.			$\begin{array}{c}\text { Elongation } \\ \text { Inches. }\end{array}$	Elongation rantage. Percenta	Breadth	Width.	Area.	Percentage.	
$\begin{array}{r} 502 \\ \text { B. F. } \\ \text { No. 161. } \end{array}$	$\begin{gathered} 1.000 \\ \text { Yield } \end{gathered}$. 574			.0013 .0091 .0092			Front heed.
				 1091						$\begin{aligned} & \text { New plate to repiace Coupon } \\ & \text { No. } 48 \text {. } \end{aligned}$
					-............	1.00						
					53,710	2.00						
						27.7	. 609	. 338	219	61.9	
506 E. B07 A.D. No. 162.	$\begin{aligned} & 1.001 \\ & y \text { ield } \end{aligned}$. 380	$\begin{array}{r} 2,020 \\ 6,000 \\ 61,030 \\ 11,500 \\ 13,500 \\ 17,290 \\ 19,540 \\ 19,950 \\ 19,970 \\ 14,9730 \end{array}$	….........	.0014 .0042 .087						Second teet ${ }^{\text {J }}$
					35,526		-	second tesk. J. E., C.
				 1601						
					…........	1.00	--		Shell of dome and dome heade.
					\cdots	1.00 2.00						
						2.86	29.5	. 666	. 216	. 148	62.4	
$\begin{gathered} 501 \\ \text { G. } \\ \text { No. 163. } \end{gathered}$	1.007 Yield	.644 Point.	. 649									
					…...........	.0035						
					-39,936							Bejected.
					1.008 .50						
					…足.	1.00 1.50						
					62,404	1.77	22.1	. 966	. 629	. 508	22.0	

Tests of Steel Boiler Plate—Continued.

Tests of Steel Boiler Plate—Oontinued.

ゅャ

Tests of Steel Boiler Plate—Continued.

Mares.	Measurenents.			Applied Load.	StraininPoundsPerSq. In.	Elongation In Eight Inchea.		Reduction of Area.				Remarks.
	Breadth	Width.	Area.			Elongation in Inohes.	Elongation In Percentage.	Breadth	Width.	Area.	$\begin{gathered} \text { Per- } \\ \text { centage. } \end{gathered}$	
$\begin{gathered} \mathbf{5 0 0} \\ \mathbf{M} \\ \text { No. } 170 \end{gathered}$	1.003Yield	.644Point.	. 646	3,050		$\begin{aligned} & .0011 \\ & .0057 \\ & .0087 \\ & .0866 \\ & .50 \\ & 1.00 \\ & 1.50 \\ & 2.00 \\ & 2.27 \end{aligned}$	28.4	. 649	. 877	245	62.1	
				15,020	…..........							
				20,100	31,115							
				21,150							
				32,300 33,910	…..........							
				34,040 $\mathbf{2 4 , 3 3 0}$	52,694							
$\begin{gathered} 500 \\ 8 \\ \text { No. } 171 \end{gathered}$	1.015	.631Point.	. 640	8,000 0013						Shell.
				15,020 21,0700156 .0123						
				22,500	35,156							
				84,410080						
				37,460 38,070	1.00 1.50						
				38,100 29,700	89,531	2.50 2.21	27.6	. 703	. 414	. 291	64.5	
600J	1.008Yield	.655 Point.	. 600	8,160 0010						
				15,050	-............	. 0067				Defective coupon.
				23,000	34,848	. 0097					Examined sheet and found it
				24,000 35,7200848						all right.-J. E. C.
No, 172				38,990 39,$3 ; 0$	58,106	1.00 1.50						
				89,350		1.66	20.7	. 770	. 504	. 388	41.2	

Tests of Steel Boiler Plate-Continued.

Tests of Steel Boiler Plate-Continued.

:

Tests of Steel Boiler Plate—Continued.

TESTS OF WROUGHT IRON BARS

Made for the Department of Public Works, Bureau of Water, Philadelphia, by the University of Pennsylvania, Department of Mechanical Engineering.

Maris.	Measurements.			Applied Load.	$\begin{gathered} \text { Strain } \\ \text { in } \\ \text { pounds } \\ \text { per sq. } \\ \text { inch. } \end{gathered}$	Elongation ${ }^{\circ}$ In eight inches.		Reduction of Area.				Remaris.
	Breadth	Width.	Area.			Elongation in inches.	Elongation in percentage	Breadth	Width.	Arem.	$\begin{gathered} \text { Per- } \\ \text { centage } \end{gathered}$	
No. 147	. 748	. 754	. 564	$\begin{aligned} & 22,100 \\ & 28,000 \end{aligned}$	$\begin{aligned} & 39,185 \\ & 49,645 \end{aligned}$	1.60	20.0	. 629	. 684	899	29.2	Tension roda, roof of boiler house.
No. 148	. 750	. 785	. 566	22,500 33,200	$\begin{aligned} & 89,750 \\ & 58,660 \end{aligned}$	1.62	20.3	. 622	. 622	. 387	81.6	Tension rods, roof of boiler house.

TESTS OF STEEL BOILER PLATE

Made for the Department of Public Works, Bureau of Water, Philadelphia, by the Testing Department of Henry Warden, Germantown Junction, by John E. Codman.

Maris.	Measurements.			Applied load.	$\begin{gathered} \text { Strain } \\ \text { in } \\ \text { pounds } \\ \text { per sq. } \\ \text { inch. } \end{gathered}$	Elongation In eight inchen.		Rrduction of Area.				Remaris.
	Breadth	Width.	Area.			Elongation in inches.	Elongation in percentage.	Breadth	Whdth.	Area.	$\begin{gathered} \text { Per- } \\ \text { centage. } \end{gathered}$	
15	. 383	1.375	. 5266	19,300 28,390	$\begin{aligned} & 36,600 \\ & 53,973 \end{aligned}$	2.260	28.	. 214	. 990	. 2118	60.	Yield point. Shell.
2 S	. 388	1.281	. 497	$\begin{aligned} & 18,870 \\ & 27,050 \end{aligned}$	$\begin{aligned} & 37,970 \\ & 54,426 \end{aligned}$	1.595	20.	. 236	. 982	. 2199	65.7	Defective coupon, rejected.
28	393	1.484	. 5635	18,560 29,250	$\begin{aligned} & 32,996 \\ & 51,861 \end{aligned}$	2.332	29.	. 214	1.180	. 2879	. 49	Yield point. Shell. $2 d$ coupon.
1 C	. 387	1.420	. 6495	$\begin{aligned} & 18,960 \\ & 31,540 \end{aligned}$	$\begin{aligned} & 34,400 \\ & 57,345 \end{aligned}$	2.269	28.	. 285	1.051	. 2995	45.6	Yield point.
2 C	. 387	1.282	. 496	$\begin{aligned} & 17,090 \\ & 27,270 \end{aligned}$	$\begin{aligned} & 34,455 \\ & 54,980 \end{aligned}$	1.968	24.	. 260	. 906	. 2858	52.6	Yield point.
18 H	. 515	1.321	. 680	$\begin{aligned} & 22,650 \\ & 38,680 \end{aligned}$	$\begin{aligned} & 33,310 \\ & \mathbf{6 6 , 7 8 5} \end{aligned}$	2.335	29. ${ }^{\circ}$. 292	. 249	. 2771	59.	Yield point. Inside head.
28 H	. 514	1.258	. 64	$\begin{aligned} & \mathbf{2 0 , 4 0 0} \\ & \mathbf{3 4 , 7 0 0} \end{aligned}$	$\begin{aligned} & 31,677 \\ & 68,882 \end{aligned}$	2.245	. 28	. 818	. 861	. 2788	87.6....	Yield point. Inside head.
FH	. 579	1.623	. 8897	29,000 54,210	$\begin{aligned} & 80,881 \\ & 87,670 \end{aligned}$	2.245	. 28.	.807	1.186	. 471	60....	Yiold point. Front head.

BEFORE TEST

- AFTER TEST

Elo.zation $2.45^{\prime \prime}$
Recroction in ITrea

FOPMA OF TEEGT OQUPON

STEEL COMBUSTION CHAMEER PLATES
USED INNEWBOUTAS
SPRINC GARDEN PUMPINE STATION

STEEL SHELL PLATEE
USED IN NEW BOTLWRIS SPRINE CARDEN PUMPINE ETATION

CHENL.OWSEY

FURNACE FLUEAND TUBULARBOILER SHOWINL SETTING IN BRICK WORK

BECTION THROUGH A\&B.

FURNACE FLUEANDTUBULARBOILER SHOWING SETTING IN BRICK WORK

 ToAccompany Report of Chief Dicafstman.

$$
8
$$

APPENDIX H.

PROPOSED SYSTEM OF WATER SUPPLY FROM SOUTHERN NEW JERSEY.

Philadelphia, May 18, 1891.
To Joseph Wharton, Esq.,
SIR:-1n accordance with your instructions to examine and report upon the quantity of water available from the several branches of Mallica River and of the Rancocas, near Taunton, New Jersey, and means for delivering the same to Camden and Philadelphia, I have the honor to report as follows:

These streams belgng to a class peculiar to the Atlantic slope of the United States, which have been designated Sandhill streams by Prof. George F. Swain in his Report upon Water Power for the Tenth Census, which designation I have adopted as descriptive of marked peculiarities of flow which I shall point out hereafter.

The Gathering Grounds.
The water sheds of the upper Rancocas and Mullica River lie in the great pine belt of New Jersey. The soil here is of the Tertiary formation, consisting of sand and gravel, supporting a light growth of pine and cedar timber, with scanty undergrowth. In many places no vegetable mold whatever is to be found, nothing but a clean, white sand. Population is very scanty. From the Physical Descripton of New Jersey, published by the Geological Survey, it is found to be but
nineteen to the square mile on the Mullica above Batsto, seven to the square mile on Wading river, and no more on the upper Rancocas.

As a consequence nearly all of the region is a forest. Only from one to five per cent. of cultivated land is found on nearly the whole of the proposed gathering ground.

To those who are familiar with the geography of Southern New Jersey, the region is best described as stretching along the New Jersey Southern Railroad from Winslow Junction to Woodmansie, twenty-five miles northeast, and extending about ten miles on either side. A trip over this line of railroad will give a good idea of the character of the tract.

The nature of the soil is to permit very free percolation of the water which falls upon it in rain. No matter how heavy the fall may be, it is a rare sight to see any surface water flowing; sinking at once into the earth it finds its way gradually through the clean sand and gravel to the streams. The consequence is that there is no carrying of effete vegetable and animal matters into the water courses to lie there and pollate them, such as always occurs when there is a rush of surface waters over steep slopes and impervious soils after heavy showers; nor is there ever the elightest muddiness. Another fact favorable to the continued purity of these waters deserves mention: Once the bed of a reservoir is thoroughly cleaned of its scanty vegetable growth there is little tendency to renew it. A very slight depth of water serves to check it entirely, and the sand remains clean, as upon the seashore. This fact may be observed in many existing shallow ponds. The tendency of water to keep pure and sweet in this region, under conditions which would, in many places, cause serious trouble, has been frequently remarked. Fven where great tracts have been flowed to a depth of only a foot or so, without destroying the vegetable growth, miasmatic diseases are unknown.

It is seen, therefore, that conditions of unusually small population, slight vegetation and a most efficient natural
filtration exist, all favorable to preserve these waters in their present condition of purity and freedom from those deadly animal and vegetable organisms which modern research has shown to be justly dreaded, and nowhere more carefully guarded against than in our public water supplies.

Quantity of Water Available.

The considerations of ready percolation above noted, besides contributing to the parity of the water perform an important office in equalizing the flow. As the water cannot rush over the surface to the streams, great floods are almost unknown. The most casual observer may notice this fact from the limited bridge openings, the long, low embankments of sand thrown boldly across the valleys with slight provision for flood overflow, and the general absence of signs of destructive floods. The water being stored up in the sand and fed out gradually to the streams, the summer flow is well sustained. The streams are far less flashy than those of Northern New Jersey and Eastern Pennsylvania. For instance, in 1878 Mr. H. P. M. Birkinbine found the flow of the Schuylkill at Fairmount to be 307 cubic feet per second, or at the rate of 0.17 cubic foot per second per square mile of watershed, the area at the point of gauging being 1,800 square miles; the flow of Great Egg Harbor River, at May's Landing, from 216 square miles of watershed, never falls below 70 cubic feet per second, or 0.32 cubic feet per second per square mile, being nearly double the dry season flow of the Schuylkill. The latter stream is subject to violent floods.

Having been engaged in studying these stream-flows for the Geological Survey of New Jorsey during the past year, the writer has collected some important data as to the amount of water available from Southern New Jersey water sheds. The results appear in the report of the State Geologist for 1890, from which I have abstracted what is necessary for this report. Gauges were set up upon some typical streams and read throughout the year. As these gaugings are the basis for
our estimates of quantity of water, I give herewith the results on Great Egg Harbor River and the Rancocas:

> FLOW OF GREAT EGG HARBOR RIVFR AT MAY'S LANDING, 1890.

Drainage Area 215.8 Square Miles.

Montr.	Rain.	Flow.	Flow in Cubic Feetper Seoond.	
	Inches.	Inches.	Greatest.	Least.
January....	1.70	1.25		
February...........	3.70	1.80	710	322
March.........	6.06	2.39	728	327
April.................	8.87	2.44	784	268
May...................	8.71	1.88	491	270
June...............	2.38	1.26	352	126
July...................	5.18	1.33	302	201
August................	5.31	1.45	541	97
September.............	6.06	1.05	366	114
October.............	6.30	1.67	346	270
November..........	0.71	1.32	325	207
December..............	4.49	1.52	488	180
Total...	48.87	19.36		

FLOW OF RANCOCAS AT PEMBERTON, 1890.
Drainage Area 111.7 Square Miles.

Montre.	Rans.	Fuow.	Flow in Cubic Fret per Sbcond.	
	Inches.	Inches.	Greatest.	Least.
March...............................	6.48	3.21	590	161
April........	2.18	1.98	329	118
May..................................	8.20	1.58	189	132
June................................	8.76	1.84	244	- 129
July.................................	5.38	1.87	211	82
August	4.49	1.25	144	97

Comparing the same six months on the two streams we have:

Comparison of Flow from March to August.

	Rain.	Flow.
(${ }_{\text {reat }}$ Egg Harbor	. 25.91	10.75
Rancocas.	24.49	11.13

The flow given in inches in these tables represents the number of inches of rain which flowed off in the stream in each case.

It is seen that the Rancocas shows a larger flow than the Great Egg Harbor. There was a leakage at the point of gauging the Rancocas which could not be measured, and which amounted to not less than five per cent. of the flow, so that the above figures do not do this stream full justice. Our streams on the Mullica probably approach closely to the Rancocas; yet to be entirely conservative I have adopted the Great Egg Harbor as a typical stream, and drawn conclusions from its flow. The flow for January is estimated at a rate known to be low, probably considerably within the truth.

It will be noticed that there is no direct relationship between the rain falling and the water flowing in any given month. A careful study of the gauging and comparison with longer series of gaugings on the Croton, Sudbury, and other streams, has shown that when the ground water is full on this stream, at the beginning of a month, the flow will be about 1.25 inches for that month, even if practically no rain should fall. This is illustrated in June and November of the table. In June evaporation is usaally four inches, and the rain falling was only 2.33 inches, none of which could have been available to increase the flow. Likewise in November the rain was less than the normal evaporation, but in both cases the flow exceeded 1.25 inches. So I find that the second month of deficient rain-fall will yield a flow of 0.90 inches, by careful examination of the records of daily flow. Careful inquiry develops that at May's Landing the wheel plant in use up to the beginning of 1890 required about 140 cubic feet per
second to run it, and there was always enough water with a little waste over the dam at night. In fact, it was deemed best to increase the wheel plant, and this was done early in 1890. Now this shows the flow of the stream in extreme dry seasons to be 70 cubic feet per second. These gaugings and the study of longer records on other streams lead to the conclusion that from December to May we can depend on the flow amounting to 50 per cent. of rain. The summer flow will be determined by the following rule: When the ground water is full at the beginning of a month, the flow (in case the rain-fall is less than evaporation plus the flow of the stream) will be for that month 1.25 inches; for the second dry month it will be 0.90 inches; for the third, 0.60 ; fourth, 0.50 ; fifth, 0.40 ; sixth, 0.35 inches.

Now the year 1890 was one of average rainfall in Southern New Jersey. The average yearly rainfall at Philadelphia for the period from 1825 to 1887 was 43.03 inches. During 1890 the rainfall at Moorestown was 43.40 ; at Woodbury, 41.17 ; and at Rancocas, 45.03 inches. Nearer to the sea the fall is always considerably greater than at Philadelphia.

The river at May's Landing is said to have been lower in 1890 than for three years previous. We may, therefore, assume the above to be an average flow. It amounts to 19.36 inches. To have utilized 18 inches of this, or 1.50 inches per month, we should have needed only a storage capacity equal to one inch on the water shed. The capacity is determined, however, not by average years, but by years of extreme dryness. The years 1880 and 1881 are generally recognized as the severest dry years of the century. I have calculated the flow from Great Egg Harbor water shed for these years by means of a method based upon thirteen years observations on the Croton, five years on Sudbury, and many gaugings of New Jersey streams, and which is described in my preliminary report on water supply and water power, Annual Report of the State Geologist of New Jersey, 1890, to which I have already referred:

Computation of Flow of Southern New Jersey Water Sheds, based on Observed Flow of Great Egg Harbor River, 1850 and 1881.

Month.	Rain.	Evaporation and Flow.	Excess or Deficienoy.	Computed Flow of Stream.
December, 1879 to Aprll, 1880	14.59	...	\cdots	7.30
May...	0.54	4.25	-8.71	1.25
June..	1.67	4.90	-6.01	. 90
July...	8.64	4.60	-0.47	. 60
August ..	6.64	4.50	-1.79	1.50
September......................................	2.94	4.90	-1.96	. 90
October..	2.75	2.35	-1.07	. 60
November.......................................	4.44	1.76	-1.89	1.55
December, 1879 to November, 1880......	42.21	14.60
December, 1880 to March, 1881...........	25.21	12.60
April.........	1.80	8.25	-1.95	1.25
May...	8.58	8.90	-1.83	. 90
June...	4.67	4.60	-1.40	. 60
July ...	2.96	4.50	-2.59	. 50
August...	0.65	4.40	-5.69	. 40
September.......................................	2.35	3.35	-6.27	. 35
October...	2.12	2.10	-3.98	. 35
November......................................	8.08	1.60	-1.47	. 85
December..	3.23	1.35	-0.78	. 99
December, 1880 to December, 1881......	49.00	\ldots	18.29

These estimates are based upon the observed rainfall at Vineland for these two periods, as this station best represents the average for Southern New Jersey. During the period from the first of December to the beginning of the dry season in the Spring our reservoirs must be filled, and consequently I have begun my years with December 1st. In 1880 the drought began with May, and while the total rainfall was much
lighter than in 1881, it was more evenly distributed, so that a flow of 1.25 inches per month could have been sustained through the dry period, from May to October, with a storage capacity of 1.75 inches on the water shed.

In 1881 more rain fell during the year, but the drought set in in April, and was sustained through November. It was the severest on record. In order to have tided over this period and kept up a flow of 1.25 inches per month we should have needed a storage capacity of six inches on the water shed. The period from December 1, 1879, to November 30, 1880 , shows but 14.60 inches of flow, but this is a marked exception, and taking into account the conservativeness of these estimates and the larger yield of the Rancocas, we may safely assume that at all times our gathering grounds will yield fifteen inches of the rainfall with a storage capacity of six inches. In other words, with a storage equal to 14 million cubic feet per square mile of drainage, we can control 713,000 gallons daily per square mile.

An average year, such as 1890 , will yield 30 per cent. more than the above figures. We have based our quantities upon the driest year, but in the following table the supplying capacity is given for an average year also.

This table gives the water sheds from which we shall draw our supply, classified by levels in accordance with the proposed plan of utilizing the flow, shown upon the accompanying table:

Water Sheds and their Supplying Capacity.

Arkas Deifivered by Gravity.	Area in Square Milee.	Daily Supply in Million Gallons.	
		Driest Year.	$\begin{aligned} & \text { Average } \\ & \text { Year. } \end{aligned}$
North branch, Cooper's creek.............................	10.24		
South branch, Rancocas, above main canal..........	20.48		
Atsion and Mecheacatauxin. above seventy feet.....	41.97		
Nescochague, above serenty feet........................	16.78		
Batsto, above seventy feet...............................	26.67		
Seventy feet level excludive of Wading river.........	126.08	89.89	116.86
West branch, Wading river...............................	${ }^{56.58}$		
East branch, Wading river..............................	50.35		
Wading river, seventy feet leval.........................	106.98	76.24	99.11
Friendship creek, upper reservoirs......................	25.62	18.27	28.75
Total for gravity, or seventy feet level.................	258.63	184.40	289.72
Fifly Feet Lovel:			
Water shed of Taunton reservoir.......................	16.94		
Water shed of Friendship canal. Water shed of Friendship canal......... Water shed of Friendship reservoir....	10.12 5.60		
Total of Rancocas at fifty feet............	32.66	23.29	80.27
Atsion and Mechescatauxin Nescochague.	$\begin{array}{r} 12.00 \\ 9.16 \end{array}$		
Total for Atsion at fify feet.............................	21.16	15.09	19.62
Total for fifty feet level...................................	63.82	38.38	49.89
Good Water, or Thirly Feet Level:			
Hamimonton Brook...	17.62		
Nescochague.......	${ }_{1786}$		
Batsto ...	31.27		
Total on Upper Mullica....................................	73.60	62.48	68.22
Thirty Feet Level, Wading River:			
West branch, Wading river......................	89.94		
East branch, Wading river.	16.10		
deaver brook.........................	6.05		
Total, Wading river	74.96	68.45	69.48
Total for thirty feet level..................................	148.56	108.88	187.70

It is seen that we have an available supply of 328 million gallons in the driest year which is ever likely to orcur, and for half the years our supply will exceed 427 million gallons. Of the minimum supply, 184 million gallons daily will be delivered by gravity, the remainder being pumped from the fifty and thirty feet levels.

The population of Philadelphia increased 19.3 per cent. from 1860 to $1870 ; 25.7$ per cent. from 1870 to 1880 , and 23.6 per cent. from 1880 to 1890 . The consumption of water for 1890 was about 116 million gallons daily, or 110 gallons per capita. This is a very high rate, and should not be much exceeded in the future. If we suppose the population and consumption to increase at a rate of 25 per cent. in each decade, we shall have the following consumption:

$$
\begin{aligned}
& 1890-116 \text { million gallons daily. } \\
& 1900-145 \text { million gallons daily. } \\
& 1910-181 \text { million gallons daily. } \\
& 1920-226 \text { million gallons daily. } \\
& 1930-283 \text { million gallons daily. }
\end{aligned}
$$

This would be the limit of the supply under discussion. Opportunities exist for still further increase to a large amount, but these have not been considered in this report.

It is but just to state that gentlemen of large experience with the utilization of flow of Southen New Jersey streams consider my figures much too low.

I acknowledge that they are very conservative, as I have based them upon the most accurate data obtainable, and when there was any reasonable doubt, have always taken the lowest figures in order to be entirely safe. It would not be surprising, therefore, if the actual yield should prove considerably in excess of these estimates. The large storage in the sand and gravel which controls the flow of these streams renders them much steadier and more constant than streams like the Sudbury, Croton, Schuylkill and others, with which engineers are more familiar.

Method of Utilizing the Supply.

Reference to the accompanying map will make clear the following description of the method by which it is proposed to utilize the above supply of water.

At a point on the north branch of Cooper's Creek, threequarters of a mile above the bridge on the road from Haddonfield to Moorestown, a heavy embankment will be thrown across the valley, creating a reservoir, with its top water surface 61 feet above mean tide, and having an area of 1,400 acres, and a capacity down to a level of 56 feet above mean tide of $2,000,000,000$ gallons. The site chosen is admirably adapted for the erection of an embankment. A natural bank projects from the south side more than half way across the valley; the soil underlying the valley is of a clayey and very retentive nature, well adapted for a foundation, and the water shed immediately tributary to the reservoir, from which we have to anticipate flood flows, is less than five times the area of the reservoir itself, so that even so heavy a flood as four inches upon the catchment area in forty-eight hours would raise the water surface but twenty inches, an amount which could be readily provided for without any waste weir whatever.

No such flood flow as this is to be anticipated on Cooper's Creek, consequently we enjoy complete immunity from danger from this cause.

This reservoir will be subdivided by embankments one mile and two miles above the main dam for further security, although it is intended to make the main bank of the most liberal proportions and of the best material, an abundance of which exists in the vicinity. An overfall will be provided at one side, over the natural surface, and the pipes for drawing off the supply will also be carried through the natural earth, and kept free from the embankment.

Pipe Lines and Conduits.
Three plans are substituted for connecting this reservoir with Camden and Philadelphia. The first is by three lines of 23^{15}

72-inch steel pipe $\frac{8}{8}$-inch thick to the Delaware river shore at Pavonia, 36,700 feet distant, thence across the Delaware 7,000 feet, 3,400 of which are beneath the river, by three lines of 60 -inch steel pipe $\frac{1}{2}$-inch thick, laid in a dredged trench on the river bed, and covered by three feet of rip-rap, the top of the stone being kept thirty feet or more below the surface of the river. This line will terminate at Kensington Pumping Station. The 72 -inch pipe will deliver 53 million gallons daily, each, with a loss of head of 18 inches per mile; while the 60 -inch pipes will deliver about the same amount, with a loss of one foot in 1,500 . The total loss of head will be for the 7,000 feet of 60 -inch pipe 5 feet, and for the seven miles of 72 -inch pipe about 11 feet, or 16 feet in all, which will enable us to deliver the water in Philadelphia at 45 feet above mean tide, with a full reservoir, or 40 feet when the water is drawn down five feet.

Any two of the pipe lines will deliver $100,000,000$ gallons daily, so that with the large storage of over $800,000,000$ gallons in the City Reservoirs, ample time would be given for cutting off one line of pipe for repairs when needed. This system of pipes is designed with a view to supply at first of $150,000,000$ gallons daily, to be increased to $200,000,000$ gallons by an additional line when needed.

This plan has the merit of allowing a rapid construction of the works, should time be limited, and a ready increase of capacity as the demand increases, and it affords all necessary security and other requisites of an efficient service. The conditions are very favorable to the use of steel pipe. The pressure will nowhere exceed that due to a head of 60 feet, and the grades will be uniform with nearly all of the line below 20 feet above mean tide. The use of such pipe is comparatively recent in the United States, although common in England. Wrought iron has been largely used in a very bold way in our Western Mining Works with complete success. The confidence which competent hydraulic engineers repose in steel pipes is well illustrated in the works now being
installed for the supply of the City of Newark, New Jersey, where the supply will be entirely dependent upon a single line of 48 -inch pipe, part of which is under a head of nearly 300 feet. The thickness of this pipe is one-quarter of an inch for heads up to 100 feet, and it is deemed amply secure for the service.

Masonry Conduit and Tunnel.

A second plan proposed for the connection of the reservoir with Philadelphia is by a masonry conduit 31,000 feet in length from the reservoir, passing to the east of Merchantville to a point near Delair Station, thence by 3,000 feet of pipe lines and 3,000 feet of tunnel under the Delaware river to the opposite bank. This is the only practicable route for a masonry conduit, and will enable us to keep the line entirely in excavation, excepting about 1,300 feet northeast of Ellisburg, which will be on an embankment with the bottom of the aqueduct not more than five feet at the highest point above the surface of the ground. The line crosses the river at the best point for a tunnel, and terminates near the Frankford pumping station, which is of much larger capacity than that at Kensington. The loss of head will not exceed ten feet, so that water can be delivered at the west bank of the river at a minimum head of 46 feet above mean sea level.

It would be necessary to build the conduit and tunnel of a capacity of not less than $200,000,000$ gallons at once, as this plan does not afford opportunity for gradual increase, with the facility offered by the system of steel pipes. This will necessitate an aqueduct of 14 feet internal width and 13 feet high to the crown of the arch. It will have a covering of not less than four feet of earth. The tunnel will be of cast iron, similar to the one now being driven under the Hudson River by the Greathead system, and will contain a steel tube of nine feet internal diameter and three-eighths of an inch thick, which will be sufficient, as it will not be subject to shock, and has only to sustain the pressure of the water.

This tube will be practically a lining filling the tunnel completely. The plan of several pipes contained in an open tunnel has been considered, but it is believed to be preferable to duplicate the above tunnel at once if necessary, although such a tunnel will deliver $200,000,000$ gallons daily, and will be secure from accident or injury.

Pipe Line and Tunnel.

The third proposed plan for connecting the reservoir with Philadelphia and Camden, is by lines of 72 -inch steel pipe $\frac{3}{8}$ of an inch thick, from the reservoir via Collingswood to a point just south of the old Philadelphia and Atlantic City railroad depot, in South Camden, thence by a tunnel to the western shore of the river. This plan requires 34,800 feet of pipe line and 3,000 feet of tunnel. The water will be delivered with a loss of head of about 13 feet, so that it could be delivered at a minimum head of 43 feet in Philadelphia, or 48 feet with a full reservoir. By this plan three lines of 72 -inch pipe would deliver $150,000,000$ gallons daily, but the tunnel should be constructed of $200,000,000$ gallons capacity, as before. The laying of an additional line of pipe would then be all that would be needed to convey $200,000,000$ gallons daily.

Advantages of the Several Lines.

We may compare the plans as follows: The first calls for 36,700 feet of steal pipe line upon land, and 7,000 feet beneath the river and across Petty's Island; or 43,700 feet in all, delivering the water at a head of 40 feet minimum at Kensington pumping station. The second plan requires 31,000 feet of masonry conduit, 3,000 feet of pipe line and 3,000 feet of tunnel, and will deliver the water at the river bank, opposite Delair, at a minimum head of 46 feet above mean tide, convenient to Frankford pumping station.

The third plan will require 34,800 feet of steel pipe line and 3,000 feet of tunnel, and will deliver the water at the
river bank in South Philadelphia at a minimum head of 43 feet above mean tide. Mean tide at Philadelphia is about three feet above low water.

The first line is best adapted to a pipe line throughout. Tunnels could readily be substituted for the pipes beneath the river on this line. The north line is the only feasible route for a masonry conduit, and the best for a tunnel also; it gives the greatest head in Philadelphia. The south line is the best for a steel pipe line and tunnel.

On the whole, the choice of plans is to be determined more by the consideration of which will be the most acceptable point of delivery in Philadelphia, then by any slight advantage in the routes themselves.

Connection of Haddon Reservoir with the Water Sheds.

We have seen what water is available above 70 feet elevation. Our first step is to divert this into the Haddon reservoir by constructing a reservoir on Atsion River, at Goshen, with a top surface level of 70 feet, to be drawn down five feet. This reservoir will be connected by a main canal cut across the divide, via. Taunton, to the head of Haddon reservoir. This canal will also receive the waters of Kettle Run, Bethany and Barton's Run, all headwaters of the Rancocas. The cross section of the canal will be such that the velocity of flow may never exceed $2 \frac{1}{2}$ feet per second. It will pass through sand, and consequently no trouble from growth of vegetation is to be anticipated, as may be seen by numerous examples of canals in these regions, with velocities as low as one foot per second, which keep for decades as clean as when first constructed. The side slopes of canals will be $1 \frac{1}{2}$ to 1 ; the depth of water 8 feet. Goshen reservoir will receive through a canal the waters from a reservoir on the Mechescatauxin, and another canal will draw from a reservoir on the Nescochague at Iron Mills. On the north a system of canals and reservoirs will control the Batsto and east and west branches of Wading River. Additional storage will be provided as
needed on the upper portions of the several streams, as shown upon the accompanying map. This area will give a minimum supply of $166,000,000$ gallons daily, and a supply of $216,000,000$ gallons in ordinary years. This will suffice for the present.

This water will all deliver by gravity into Haddon reservoir, and thence to Camden and Philadelphia. In its passage through the several reservoirs and canals at low velocity, it will be most effectually freed from any trifling matter which may be carried in suspension, and will be delivered in a state as near absolute purity as it is possible to realize in natural waters.

Extensions.

The first step which will be taken to increase the supply will be the construction of a reservoir at Burr's Mills, on Friendship Creek, at an elevation of 90 feet, to be drawn down to 80 ; and a smaller reservoir at 80 feet elevation south of Friendship.

These reservoirs will be connected by canals, and a slight deepening of the stream channels with a canal across the divide will deliver the water of the 26 square miles which they control into Hampton reservoir, of the 70 feet level, increasing the supply to $184,000,000$ gallons minimum, or 240 average. For practical purposes we may say $200,000,000$ gallons is fhe limit of the gravity supply, which we have now reached.

By constructing the reservoirs of the fifty feet level at Atsion and connecting them by canals, as shown on the map, we control a further supply of $15,000,000$ to $20,000,000$ gallons. This will require lifting by a pumping plant 20 feet into Goshen reservoir.

Taunton reservoior and Friendship canal and reservoir, on the south branch of the Rancocas, will furnish $23,000,000$ to $30,000,000$ gallons more at 50 feet elevation, to be lifted into the canal at Taunton from 15 to 25 feet. This will bring the
supply up to $223,000,000$ gallons minimum, or $290,000,000$ average.

Next, the construction of Goodwater reservoir and Columbia reservoir will add $52,000,000$ to $68,000,000$ gallons, to be lifted by a pumping plant and force main at Atison into Goshen reservoir, the lift being about 40 feet.

Finally, a canal to Harrisia and a reservoir on Wading river, at a high water level of $37 \frac{1}{2}$ feet, will add $53,000,000$ to $69,000,000$ gallons, and utilize the full supply of $329,-$ 000,000 gallons in extremely dry years, or $427,000,000$ in ordinary years.

Engineering Features.

The plan is, on the whole, an extremely simple one. Excepting, perhaps, the Delaware river crossing, the utilization of this supply presents no necessity for difficult constructions or untried methods. The reservoir embankments are all low, and excellent material for their construction abounds. The highest is that at Haddonfield, 48 feet from creek to surface of water in reservoir, but conditions here are such that absolute security is only a question of liberal use of the excellent material at hand in constructing the embankment. The embankment and other constructions on the water-shed proper do not exceed in dimensions existing constructions in that region, which have stood successfully for many years.

In dealing with water-sheds of this character, an entirely different method of treatment from what is met with in ordinary practice becomes necessary. In all of our construction we must take into account the slope of the ground-waters and their movement toward the lower part of the water-sheds. Low embankments and open canals are especially desirable as a means for collecting and retaining such waters. Then, too, the absence of population and its attendant evils, and the clean, insoluble character of the earth, makes especially advisable the adoption of open channels. Another fact which has made the arrangement of canals and reservoirs somewhat
peculiar, is the necessity for drawing off the waters in a direction the reverse of their natural flow. This is the reason for the arrangement of the reservoirs in levels, and the connection of all of a given level by canals.

Conclusion.

I have laid before you estimates of the yield of the watersheds, based upon figures which I can vouch for as trustworthy and conservative; also the peculiarities of these sandy watersheds, which contribute to the purity of their waters and regularity of their flow, having been familiar with these features for many years as they are exhibited throughout the great sandy plains of Southern New Jersey and elsewhere. The engineering works, which are needed for utilizing the supply, have been outlined as closely as will be needed for the purposes of this report, and will be readily understood with the aid of the accompanying map. In their design I have followed engineering precedents closely, even where I have availed myself of the comparatively new possibilities of steel hydraulic constructions. But by whatever method they may be delivered, the great advantages of distance (Haddon reservoir being but nine miles from Philadelphia's City Hall) of uninhabited gathering grounds and complete natural filtration offered by this plan of supply, are weighty considerations in its favor.
Before closing I wish to acknowledge my indebtedness to yourself and Mr. J. A. Braddock, for the general features of the plan which I have developed, and for many valuable suggestions in regard to important details.

Respectfully submitted,
(Signed)
C. C. VERMEULE, Crvil Engineer.

APPENDIX I.

Proposed Plan for Sapplying Philadelphia with Schaylkill Water from Norristown Dam.

Submitted by the Reading Railroad Company.

Starting at a point on Norristown Dam, where Barbadoes Island, nearly one mile long, divides the river into two channels, and effectually protects the west channel from contamination, it is proposed to build an aqueduct. to the City Pumping Stations on Flat Rock and Fairmount Dams.

The proposed gate-house or inlet, with suitable regulating gates, would be located on the west bank about 600 feet above the dam, fronting on the main channel in deep water, free from the dam, fronting on the main channel in deep water, free from sedimentary deposit. From this point the water would be carried in two riveted steel pipes $8 \frac{6}{10}$ feet diameter, with a grade of one in five thousand, and with a capacity when running full but not under pressure of $254,000,000$ gallons in twenty-four hours, to the mouth of Arrowmink Creek, on the southern border of the village of West Conshohocken. Provision would be made at the inlet gate-house for putting the pipes under a head of two and a half feet at low water, and thus increasing their capacity if required. The pipes would end in a gate-house at Arrowmink Creek, in which provision is made for a waste-weir and blow-off, as well as for regulating gates for the next section of aqueduct.

It is not practicable, from Conshohocken to Philadelphia, a distance of about nine and a half miles, to follow the river with a conduit of large size. The existing railroads, manufacturing establishments and other improvements, would make such a location exceedingly costly. The preferable route is through the hills by an aqueduct line entirely in tunnel, from the gate-house at Arrowmink Creek to a similar one in the West Park, near Belmont Glen, a distance of 40,680 feet, or $7 \frac{7}{10}$ miles. Modern science has provided means for tunneling in solid rock comparatively easy and cheap, so that this feature of the line should not be regarded as extraordinary. The Croton Aqueduct of the City of New York, lately completed, is mainly in tunnel, and the City of Baltimore also has an aqueduct in tunnel, seven miles long, carrying the Gunpowder river supply.

The section proposed as far as Mill Creek Valley would be twelve and a half ($12 \frac{1}{2}$) feet diameter, horse-shoe shape, with a grade of one in six thousand, and a capacity when running full but not under pressure of $300,000,000$ gallons per twentyfour hours. From Mill Creek Valley to Belmont, there would be another section of twelve and a quarter ($12_{\mathrm{r}}^{\mathrm{r} 05}$) feet in diameter, horse-shoe shape, with the same grade and a capacity of $284,000,000$ gallons per twenty-four hours. The excavation along the entire line of tunnel would be mostly in gneiss rock, of which it is estimated only thirty per cent. would require lining.

In Mill Creek Valley a gate-house would be provided, from which a branch line in tunnel is proposed to carry $40,000,000$ gallons per 24 hours to Roxborough Pumping Station.

From the gate-house at Belmont provision would be made for the supply of Belmont Pumping Station by means of one or more 48 -inch cast-iron pipes as required.

The crossing of the River Schuylkill at this place is proposed to be made by riveted steel pipes 50 inches in diameter, carried on a stone bridge of ten arches and one iron plate girder span, the latter over the East Park drive. This plan pro-
vides for a bridge 70 feet wide on top, with ample room for driveway and footwalks. The location would be in line with Diamond street, on the north side of the East Park reservoir, and this extension of Diamond street by means of the bridge would open up a much-needed and attractive avenue of communication between the east and west sections of Fairmount Park for the northwest section of the city.

On the east side of the river, south of the Edgley ravine, gate-house No. 5 would be located, forming the inlet with regulating gates to the tunnel section of aqueduct extending from Rockland to Spring Garden, a distance of 5,015 feet.

The cross-section proposed is eleven and a half ($11 \frac{1}{2}$) feet in diameter, horeshoe shape, with a grade of one in six thousand, and a capacity when running full but not under pressure of $237,000,000$ gallons in 24 houss. This section would cross both the Philadelphia and Reading Railroad and the New York Division of the Pennsylvania Railroad under grade, and deliver the water into a gate-house and distributing chamber located on the rock bluff adjoining the Spring Garden Pumping Station, this gate-house to be connected with the Fairmount Water Works by a 48 -inch main.

The elevations at which water would be delivered to the pumps at the several pumping stations, and the saving in lift over the present system is as fol.

$$
\begin{array}{ll}
\text { Roxborough, } & 42.00 \text { feet above City Datum, saving } 11.1 \text { feet lift. } \\
\text { Belmont, } & 36.92 \text { feet above City Datum, saving } 31.8 \text { feet lift. } \\
\text { Spring Garden, } & 37.16 \text { feet above City Datum, saving } 32.0 \text { feet lift. } \\
\text { Fairmount, } & 35.07 \text { feet above City Datum, saving } 29.9 \text { feet lift. }
\end{array}
$$

Based upon the present pumpage at the above works the saving to the City in cost of pumping should approximate fifty thousand $(50,000)$ dollars per annum.

The estimated cost of the main line of aqueduct complete from Norristown Dam to Fairmount, a distance of 74,150 feet or 14,004 miles, is in round numbers $\$ 6,500,000$. This includes branches to Roxborough and Belmont Pumping Stations with necessary gate-houses and fixtures, and right of
way, except over City property. The time required to build such a work would necessarily be lengthened by the amount of tunnel work to be performed. It is estimated at four years.

The proposed aqueduct described above is planned to meet the requirements of the existing pumping stations on the Schuylkill River. These locations, with the exception of the Roxborough Works on Flat Rock Dam, were chosen many years ago, when there was a comparatively small population north of Girard avenue. Considering the rapid extension of the City northward, and especially the growing movement in Philadelphia, and in fact in all cities, to locate private residences on higher ground than was the custom a quarter of a century ago, it certainly would be good engineering to place any future large reservoirs north of the City and at a higher elevation than has been proposed.
The low service distribution is controlled by the East Park Reservoir, at an elevation of 133 feet above City datum. This is within easy distance of the Spring Garden Pumping Station, and, under existing conditions, the location can scarcely be improved upon. The high service distribution is now controlled by the Roxborough Reservoir, at an elevation of 366 feet above City datum, but will in a short time be fed by the new Roxborough basin, of much larger capacity and at an elevation of 419 feet above City datum. Between the high service, 419, and the low service, 133 , there exists a pressing necessity for an intermediate distributing reservoir, at an elevation, approximately, of 250 feet above City datum. Provision has, indeed, already been made for this by the Department of Public Works, in the proposed location of a large reservoir in the neighborhood of the Scheutzen Park, at Falls of Schuylkill, Twenty-eighth Ward. The distance from Spring Garden pumping station is three miles, and under existing arrangements the proposed basin can be supplied from that station only. It does not appear reasonable to convey water by expensive aqueduct lines to a point as far south as Spring

Garden, to be pumped back again through three miles of pipe to the point of distribution.

Looking, then, to the growth of the City northward, and especially in the event in the building of an aqueduct to bring in the Schuylkill or its tributaries from a point beyond the City limits, it would certainly be more economical to establish a new pumping station near Flat Rock Dam to pump by water or steam power into a reservoir for intermediate service. An excellent location may be found on ground owned by the City at the Roxborough Poor House, on Shawmont avenue, north of Crease's lane. Here it is possible to construct a large basin at an elevation, approximately, of 275 feet above City datum, and within easy reach of the City by way of Wissahickon avenue. The distance from Flat Rock to the proposed site, by way of either Domino lane or Cinnaminson avenue, depending upon the location of the pumps, is about 7,000 feet.

The saving to the pumps, in lift, in connection with the increased elevation afforded by the proposed aqueduct would be 36 feet, as compared with the elevation at the Spring Garden Station. The advantage of using water power at both Flat Rock and Fairmount is too manifest to need argument. As to the use of both steam and water power, under the most favorable circumstances, the average cost for 1888 and 1889 was for water power $\$ 1.34$ per one million gallons raised 100 feet high; for steam power at Spring Garden, Belmont and Roxborough, $\$ 4.60$ per one million gallons raised 100 feet high.

The effective power at Flat Rock, based upon the average of nine years, $1880-1888$, neglecting the year 1889, which was one of exceptionally large stream flow, and also making proper deductions for the water diverted at Norristown to feed the aqueduct, is as follows:

Average minimum three months of the year.............. $1,025 \mathrm{H} . \mathrm{P}$.
A verage ordinary flow three months of the year......... $2,000 \mathrm{H} . \mathrm{P}$.
Maximum six months of the year............................2,400 H. P,

At $\$ 20$ per horse power per annum, this power is worth $\$ 39,125$ per annum.

The location proposed for the new reservoir is also near enough to the Roxborough Pumping Station to use steam power at that station as an auxiliary during the summer season, should the water-power at Flat Rock be below the requirements.

In conclusion, the Schuylkill has been a gift to the City for many years. Nothing has been expended upon it except to build one dam (Fairmount) to create a pool to pump from. Other cities-New York, Boston, Brooklyn, Baltimore, and many more-have expended large sums of money to protect their sources of supply. Philadelphia has, until very recently, done nothing but pump and sell its Schuylkill water, taking it as it flows past its doors without hardly knowing where it comes from or what it contains.

When the Schuylkill Navigation Company was in full operation, with as many as fourteen hundred boats engaged in the coal trade, and the Company exerted itself to the atmost to store water in the mountain districts, and let it down daily during the summer season to move a large tonnage, the river was kept in the best possible condition, and the standard of purity was raised by the inflow of water from the up-river dams. With the decline of the boating interest the City will certainly lose the beneficial effect of the Navigation Company's care of the river.

Surely, when we consider the great wealth and population of the City, the cheapness of its water supply in the past, and especially the dosirability of retaining, with some modification, its present system of water works, it will be to the interest of the City to go beyond the suburban towns to take water from the river, and also to control the stream with its dams and improvements by ownership, or otherwise, to its headwaters.

This plan would insure good water to the City of Philadelphia for a century to come. Not the least of its advantages

L

wher is ic
$=A^{-}$

. 1

would be the saving to the City of the present pumping stations, which are admirably adapted to their work, and are the result of many years of labor and a large expenditure of money. To go to any other source of supply will involve sacrificing this plant, the pride of Philadelphia in the past, which, if supplemented by the construction of the proposed aqueduct, may continue to be the pride and satisfaction of the City for another century.

ESTIMATE OF COST

Of a proposed aqueduct to convey the water of the Schaylkill river from Norristown dam to the several pumping stations of the City of Philadelphia on the Schuylkill side.

YC 04929

[^0]: * Not lighted because of proximity to electric lighta:
 1890....................................2,760 1891....................................8,298

[^1]: * Car Track part way. \dagger This item does not include 333 feet where the Pennsylrapia Railroad is cropsed, which cost 85,92758 or $\mathbf{1 7 , 8 0}$ per Lineal Foot, complete. \ddagger Car Track all the way.

[^2]: Note-Quarterly meter bills and delinquent water rent bills were also served by this

