THE

PHILADELPHIA WATER SUPPLY.

Commission of 1878.

- HOWIN, HHAF IIIE FAHRMOUNP WORK. REALIKF LFA IHAN HHIRIV
 [HI N: (HINIRI HAD DIEV PII IN KFPMR IOR
 $\left[\begin{array}{lll}{[\mathrm{P}, 9+\mathrm{ANH}} & 107\end{array}\right]$

EDITED BY JAMES HAWORTH.

PHILADELPHIA, OCTOBER, 1880

F(11.I-H5J B5 THF AT THい!

 145.Sent Post-paid on receipt of PRICE, 50 CENTS

THE

Phillainel.phaa Water Supply.

REPORT

of the

Commission of 1878,

SHUWINC, IHAI IHF FAIRMOLNT WORKS REAIIZF, LESS THAN THIRTY PFR CFNT, UF THEIR PROPER EFFECT-AND EVEN IHIS AF゙IER THE MACHINERY HAD BEFN PUT IN REIAIR FUR IHE FXPERIMENTS OF THE CIMMHSSION.

$$
\left[\begin{array}{ll}
P P \cdot 94 A N D & 107
\end{array}\right]
$$

Enitel by James Haworth.

PHILADELPHIA, OCTOBER, 1880.

PHILADELPHIA:
Jobin P. Mirphy, Railroad anu Commircial Printing House, 227 South Fifth Strbet.
1880.

EIRRATA

Pugr	$\underset{\text { Lop }}{\text { Line }}$	from bottom	For	Recost
4.2	7	-	Bryn Mawr	Brvin Mawr A venus
49		i	$5,000,000$	$10,(1111)(000)$
6.3	1.5	-	formula 2.	tormula 4.
65	-	10	$D u$.	$1 n^{\prime}$.
67	-	6	lap	flay
75	「	-	$25,0001)(\mathrm{HW}$	30,6m\%, 0001

The column 1878, page 17, should be fillen up, with the following data

Novemler...	$\stackrel{-9}{-9}$	2.15	$\underline{2} \mathrm{a}: 3$
December	187	:3.1!	1.37
Total........	$4: 3.7$	31.	\% 3

A NEW PLAN

FOK IHI

Philaidelphia Water Supply.

A. the offinning of the fiets brought forth by the acermpanying Report, the undereigned ansiders the following to be the most judiofous monle of : mpplying lhiladelphias with water:

The ('ity of Philalelphia ean le fimmished with $100,000,000$ gallon- of pure water, लery lay in the year, low adding to the preant volmme of the schaylkill all oceasiomal supply from a large dan which conld be constructal on the Prekiomen Creek.

This supply, wheneveregnired, ronld le run dewn its natural (lammel to the flat Roxli I) am, and form thence to a point nearly

The combined leand att this plate of the two falls (Faimomet and Flat Roxk) would be 3 (i fert, and the pump: would lave 24 fert lesi lift into the hasins than at present fom lairmount Dam. This head would be so powerfil that the little 7 feet turbine wheel, No. 1, mow at F'aimonnt, would give a power of 1200 lorse, and a daty pumpare (after deducting one-third for friction, ete., of $1(0,000,000$ gallons into the city lasias. The present supply of Roxborongh amb Germantown fion the Flat Rock Stean Works, which eosts the City \$60.00 per million gallons, conld be derived from the Wissahickon, by water power, at $\$ 2.00$ per million.
'The aggregate cost of coal for the stean pmonage of 1879 was $\$(i 5,000$, which wonld pay the interest on the entire plant of the plan here reonmmended, while, at the same time, this plan would ohviate the expense of the very eostly sewer from Flat Rock to tide-water, which would be indi-prensilble under the presentsystem.

The cost of supplying water hy the above plan, would only be about 50 cents per million gallons, as the works would require but a small amount of machinery, and but few hands.

It present there is wer $191,(000,(0)($ gatlons hasin capacity, and yet it may be satid that a little more than 100 , 0000,000 enallons is ever stored.
 never nsed, and this does not look as it the eity was short of basin room.

When there is need of more storage eaparity, there ean be a natural basin built on (ienrge's Rum that would hold from $500,000,000$ to $1,000,000,000$ gallons at a rost mot exacerlinge $\$ 30 .(1) 0$

Being interested in the welfare of the eitizens and taxpayers of Philadelphia, we believe it is onn duty to herehy inform them of the deplorable corvertions that are being antimally perpetrated by the ${ }^{T}$ ater Department.

Having kopt a close eye on this depatoment for many yoars, we have conne to the conclusion that the Faimoment Water- Work: have not heen smpplying mone than one-sivth of the water that they could have done, ally dat, whether the diver was high or low, for the following reatonl-:

1. 'The pmonps are only pumphing onte-thited of the water that they register: on aceoment of their larl comblition.
2. The turbine wheds are only rim onc-half of their propere speed, the dep:atment preferming to allow the water to run to Wate over the Dath instand of thengh the wheels.
3. 'The wheds are systrmatically rime at high tide, and stopped at low tide; when at high tide they have only 108 horse-

The above shond be Hu aroct, fin ally intelligent man an ascertain the facto, at any time he genne the worki with his. eyes open.

The Department have not at proment aly need of mone basins, as those they have do mot keep mone than half fall, on an averacre, as will be sen ly referming to pates Nos. :3.5, :3引 and $: 37$ of the aceompanying pamplitet.
J.I.ME H. 11 OOROM.

PREFACIE.

Oppref 1 widt if. hid lifiristy, the himprsigned through the accom-
 tor many yars

 the Hatm that the ihterti of sull a mont winlt maturally be questioned.

 twenty two to homts vidit per mit. onts.
 "nter the flume to the Fommount who I wh1-1 s arcely a perceptible current

 ler day

Sth. 'Ihu durng the water fam we of 1~69, the water-level in the Fairmount hail was drawn down thre feet blow its hreast; thereby cutting of a supply of water from the pump, ant also stoppung the navigation. Daroage
to the extent of a quarter of a nillion of dollars were thus entailed upon the City, together with the risk of a Chicago fire.

6th. That during this water famine, the wheels were continually run at high tide and stopped at low tide, thus enormonsly diminishing their power and -fficiency.

7th. That the basins for long periods of time, were kept but half filled, and many citizens thus deprived of water ; and as a consequence, muddy water had to be usod after every storm.

8th. That neglecting to utilize the cheap water-10wer of the Schuylkill, expensive stean works were unnecessarily erocted at Kensington, Frankford, Roxborough, \&c.

9th. That for the ten years prior to 1874 , the City not only received no revenue from the Water Department, but lost the sum of $\$ 400,000$ over and above all its heavy appropriations during that period.

The undersigned has long been of opinion (as is hereinafter denionstrated) that the water-power of the schuyllill River (with the aid of proper impounding dams) can for nearly a century to come, furnish the entire supply of Philadelphia, and at the same time endow its Treasury with an income of five hundred thousand dollare per annum. The pamphlet published early in this year (1878) entitled: "A discussion of the Economic Value and Engineering Misman"agement of the Fairmount Water-Works," will give his views more in detail on these points.

Under the existing system, the officials of the Water Department manifest no interest in the welfare of the City, nor does it appear in any way feasible to render their interests and those of the City identical, unless by consiguing the Department to the control of a private company. Should the City thus be euabled to realize an abundant, cheap and permanent water-supply, the most cherished hopes of the undersigned in this connection, will have been accomplished.

JAMES HAWORTH.
Philadelphia, December, 1878.

REPOR'T TO JAMES HAWORTH, ES(Q., ON゙ THE WATER-SUPPLY OF PIILADELPHLA.

Sis:-Tla' ('ommission appointed by fou to inventigate the Water-supply of Philaddphia, has the honor to report that its lator is completed ats far ate the permission granted by the Water Committere of ('ity Commeils extomed.

The interrogatories given in four letter of July 22,1878 , as well as your application to the Water ('ommittee for permisaion to make experiments at lairmomet, did not include the steam water-worls, which you afterward- dereired to be investigated ; and which, although commeneerl, was not completed, beeamse the Chief Engineer of the Water Department did not comsider himself authorizel to allow it, ats will be seen in the conrespondence emberlied in this Report.

This is to be regretted, becalse the investigation of the watersupply cammot be rendered complete without that of the stemm works.

The water in the selmytill river has been wery low duming this whole summer, (1878 , which hats oceasioned delay in finishing the leport, as opportunity for experiment could be secured only from time to time according to the state of the river, when the works at Fairmonnt combld be placed at the di-pmal of your Commision.

The General superintendent of the works, Mr. Robert MeFadden, as well as the Engineers, Messrs. Joseph Moyer and A. C. Bon-all, are entitled to the thanks of your Commission for their unvarying kindness and courtesy in giving every facility for the accomplislment of its task.
'The ('hief Engineer, Dr. Mr. Fakden, was requested to appoint an Assistant Engineer of the Water Department to join your Commission and witness the experiments, which was decelined, and no one connerted with the water-works appeared to take the sliglitest interest in the same. Your questions are printed in black italic, and the Commission's answem in Roman letters.

In the organization of yon Commission, it wats solemnly agreed, aceording to your request, that no policy or etiquette should impair the integrity of its Report, whatsonere interest it might afferet.

In order to aroid confusion, it was further agreed, that in case of "lifference of opiniom, cach member of the Commission could append his imdivilual ideas signed by himself. The few differences that have arisen, however, have finally beem harmonionsly reeoncilerl, the result of which is, that the Commissioners have the pleasure and honor of submitting to you herewith their unanimons Report.

$$
\left.\begin{array}{l}
\text { IOHN II. NYSTROM, } \\
\text { W. BABNET LE VAN, } \\
\text { WHLLAM DENNISON, }
\end{array}\right\} \text { Commission. }
$$

To James Haworma, Exre,
Philadelphia, Dec. 30, 1878.

（N）I $\ddagger .$.

Agrement bulween the City atul the Sharlkul Conal coo．．．．．．\＆	
－gurduct lipe Britgencor Wima	
Behmont water werk＝ Berkimb ne－Ara of－Imsthall water $\mathrm{L}_{1 \times \mathrm{I}}$ I	
1 lustut II，ll wate werle	
Combu－tou of ond ．．．．．．．11t	
10 －2．2．	
anlo 5	
Consumptern if whter in｜hita delphia$1 \div 1,1: 1$	
©解 of Famment watir werk fo Cont of water fump big Increas． of， \qquad	
ost of wator anl shan penwer， け，19，7i，ス！い	
Correlombence with Water D_{4} ． ［arıment． 	
Crampis 20 （OHO）O（H）gallen engite 115，13：	
laware water－work－－．	
lint	
	＊eron
ity and Horse power．．．．．．．．．．．． 10	

E

Fill of of Water－pow－ 30 lixpriments on iluty at fair－ menme． 93，！3！
1．x．umanto ond duty at lechuent If Leak：ant of pumps，10｜－11＂ 1
I Anm mat ilatis．Water flowng いど．．．．．．．．．3．5．3！！

drawn lusぃ ．．．． 54
IIymanhes of，37， 41
Water works，

$$
31,47, a k, 10 ?
$$

Flanh homat at l＇amonnt．．a．．．II，I．2
H．1．t liuk latin ．．．．．．．．．．．．．．．．．．．．．．31，11

Chef lin

Pranur．Ji－li Werr furmula．
$\therefore 3.3,5$
トいuk mil II ter 11 orta ．．．．．．｜ls
i

1．aili－tor turbme ．．．．－．．．．1：－7
Giorge linn Remetiol i．．．．．．．．．．12
（f．yelin＇Turlan．．．．．．．．．．．．154．｜01．3
bracti，Fitulemk．．．．．．．．．．．．．．．．．．i．s

II

Hawneth ulmervation－limn
ing whes ls at high tule．．．．．．5．nit
Combliction if 1 1－5．．．．．．．． 5 ent
1．Interrogations on Thernton＇s
I＇ropocition ．．．．．．．．．．．．．．．． 1.31
limarks．．．．．．．．．．．．．．．．．．．126，129
If al of fall at Fairmount－25， 2 ？
H：hography of schuylkill Water shel

19， 21
Hydrogray hy of Wissahickon
IWater Shed．．．．．．．．．．．．．．．．．．．．．．．．． 124
I
Impounding Dams 13, 14
Indifference of Commission of
1875 52

J

Jonval (Geyelin) turbine 91
K
Kensington, bad drinking water .. $\overline{1} 1$
Konsington or Delaware Water-
Works
11.

L

Jog for measuring water : 0
Low water in the Scluyllkill it

N1

Manayunk Mills 31
Water-Works 41
Maximum, average and minimum flow of the Schuyikill 10
Mo.Appine, precentage of rainfall 11
McFaiden, Dr: W. II., Chief Engineer Water Departinent, 15,23
$19,168,71,8 t, 87,118,120,129$
Minimum flow of the schuylkill, 2l
Mount Airy Water supply 130

P

l'ackings of pumpr-pistons . 12
Perkiomen Impounding Dam .. 43, 15
Permission of Water tommittee.
90, 119
Piston rods for horizontal pumps, $1 \because 8$
Pipe-Bridge (Aqueduct) over Wissahickon

126
Power lost by running turbines
at improper speeds 64
Pumps and turbines, Proportions of 61

R

Rainfall, Schuylkill Bawin9, 12 " Philadelphia if Reading, 14, 16, 55
" England 13
" Wissahickon basin 126
" Monthly percentage . 11,13
Rainfall, Greatest monthly 18
" per square mile 18
" available at Fairmount, 19
Recommendations for improving Fairmount Water-Works 13.
Revolutions of turbine, Proper.. 65, 99
lieservoirs, Wrater low in 57
lioxborough Water-Works 11;
s
Sohuylkill W'ater-shed. 10
" Water-works 115
Signal Service, United S'tates, 9, 14, 46
Small punpage at Pairnount... 8:
S'mith, James F, Chief Engineer
Schuylkill Caual, 9, 22, 31, 45, 85)
T
Thornton's, Joseplı D... proposition, 129
Tide, intluence of. 24, 29
Transferring the Water Depart inent to a Company 127,133
Turbines stopping and water run-ning through72
V
Virlocity of turbines, l'roper.....65, 99
W
Water Committee of Councils, (38, 89, 129
Water Department correspond-
ence. 87, 119
Water Department transferred to
a Company 127, 13 3
Water-Works, Fairmount. 86. 1019
" " Belinont 1111
" " Chectunt Hill $111 ;$
" " Helansate 11.
[rauktora] $11!$
lioxboroush 116
xrluylkill 11.7
If ater tamine latarl 8
Water presure chince 7, 13:7
Wheels run at hagh. stopped atlow till.5T, (5i)
Tissalhickon lipw Brils" $12(\mathrm{f}$
Winsahickon Water power 1:1
Wier measurement of water.22, 3.5, 5:

REPORT

WATER-SUPPLY PHILADELPHIA

RAINFALL, ANH (QUANTITY OF WATER IN THE s'HIYLKILL BASIN.

\$1 - Whret is the merorge, maximum atud minismum drity flow of thr Schuyllill River at Freirmonllt, in gallons, slecluced fromu the areal of its wrater-shed ullel firou the allulunl rainfill!:"•

It is diflicont to give precision to this interrogatery, on anconme of insufficient memeds of ramball in the Schaylkill basin.

The United states Signal Somiew hate only ihree stations- in Pemmeyvania, natmely, at Philadephia, Pittsurg and Erie: neither of which is in the Selnyelkill basin.

Mr. Jame- F. Smith, Chief Enginew of the - ehuylkill camal, has kimelle firmiahed your Commisumb with some data of rainfall at Reating, l'a, from whervations mate lig Dr. d. Heyl Raser, extembing fiom July, 1 s69, th Derember, 1sit: and
 to the present time; which data are emberlied in the table of rainfall below.

In his Report on the Schuylkill canal, to the I'. \& R. R. R. Co., dated Deember 16, 1874, pare 87, Mr. Smith say: : "'The
"area of the valley embraces about 1800 square miles, which, at " 42 inches of rainfall ammally, and utilization of 18 inches, which "is not excessive, will afford 75,271,680,(000 enbic feet, equal "to $563,032,166,400$ gallons per year, passing into tide-water at "Fairmomut." This wouk be on an average $1,5+1,1+40,200$ gallons per 24 hours, or 42.7 per cent. of the rainfall.

Mr. Henry P. M. Berkinbine, ex-chief of the Water Department, in his paper real before the Franklin Institute, February 20, 1878, says: "The drainage area of the Schuylkill above Fairmount dam is as follows:

Schuylkill	(omily	324	square miles
Berks	"	841	" "
Lebanem	"	4.3	" "
Lehigh	"	73	" "
Mositgomery	"	376	" "
Bucks	"	82	" "
Chester	"	162	" "
[hiladelphia	"	22	" ${ }^{\text {a }}$
Total		1943	" "

Mr. Berkinhine a-sumes 50 per ent. of the rainfall to be available at Fairmomit, and estimates the average flow of the Shenylkill thes,

> Minimum daily average $\quad 200,000,000$ galloms
> Memu daily average $650,000,000$
> Maximum daily average $1,665,(600,000$

The pereentage of rainfall available at lairmont is not eonstant but differs with the samions of the year. In summer, more water is absobed by veretation and evapomation than in winter, which canses the searcity of water in the smmmer months, notwithstanding that the average rainfall is then greacest. In the Report of the (ommis-ion of Engincers of 187.5, page

132, Mr. Wm. J. Me.llpine estimates the pereentage of rainfall a vailable in each month of the year, as follows:

Jamuary,	90	July,	30
Felnmary,	80	Angnst,	20
Mareli,	70	September,	40
April,	60	Oetober,	60
May,	50	November,	80
June,	40	December,	90

The average peresentage for the year will aceordingly be 59.2 per cent.

The quantity of water aboubed by vegetation and evaporation is probably meally comstant, for the respective months and seasons of the rear, and is mot a certain pereentare of the rainfall. A rery light rainfall in the summer may be all absorhed, whilst an exeededing small pertion of a heavy one womld be taken up.

Your Commission is therefore inelined to believe, that it wonld be more corred to allow a certain mumber of inches of rainfall in cad month of the year, for vegetation and evapomation, and the balamee counted "fom to tee due at Fairmomes. The question, then will further arise, how much is actually absorbed each mometh. Thii question cammot be satisfactorily amswered, fiom the data in ponconon of your Commission; as even the records of the water in the Fairmonnt Dam, made by the Water Department, ate rery incomplete and even mureliable.

The flath-haral at the Fairmont Dam is, gememally, partially hrokem in the winter, by thating ice, ©(e., and no records are hept of the time or extent of this damage.

In the surimg, gencrally in the month of May, when the watere is -ufficemty low for worlmen to pass on the erilh, the flathlband is replaced ; but now :ceome of that time appears in the IV. W. Ripnets, and the Chef Engineer says, that no such re-arol-exi-t. This flath-toard arrangement is but a specimen of mathe--hii engimerimg, and should be replaced by elevating the (omb of the Dam permamently to the same, or what would be better, to a greater heeight, and by providing a special outlet for flowl-nater.

The flash-board can be cointed upon to be in position five months in the year, namely ; in Jnue, July, August, September, and October, for which time the daily average quantity of water passing into tide-water at Fairmount, is calenlated for seven years, and is contained in the aecompanying Table I, which also contains the total yearly rainfall, and the parts thereof available at Fairmonnt, as also the portion absorbed by vegetation and evaporation.

TABLEI.

Proportion of Pumpage, Waterfion ant Rainfala.

	Water nominally pumped per day by all the Schuylkill works Average.	Average daily flow through Schuylkill at fairmount.				
yEARS	g.ablens	(isllons	Incl	ins. ins.		fallig.
1867	$29,76 \pm, 798$	111,800,000		35.	2	60
1868	$32,746,390$	$2,518,000,000$	1.	7.623 .8	53.	53.19
1869	$\because 4,01: 3,(020$	$1,5: 39,800,000$	8.8	16.732 .1	34.	52.59
1870	$36,720,030$	$1,526,000,000$	44.10	16.527 .5	37	6.81
1871	$36,981,916$	$2,151,750,000$	47 いい	23.693 .7	50.	5).). 11
1872	$35,6 \pm 8,405$	1,566,161,5)0	51.12	19.t:31.7	:38.0	+. 6.3
1873	$38,967,667$	1,7•20,885,636	58.28	$18.6: 39.7$:32.	51.f()

This table was made up to the year 1877 inclusive, but afterwards it was considered that the data in the W. D. Report, sinece 1873, were so mureliable as to render it advisable to rejeet them from Table I.

The percentage available does not agree with the data of Mr. MreAlpine, whose average, for the five months form Jne to October, is 34 per cent., whilst our table giver an average of 50.8 per eent. Your Commission therefore prefer to rearrange the monthly pereentage of available rainfall, so as to make it conform with the calculation for Fairmount, namely as follows:

Jamary,	90	July,	32
Febuany,	87	Angust,	30
March,	79	September,	35
April,	66	October,	52
May,	52	November,	72
Nume,	10	December,	85

The average fine the year, of these peremotages of mainfall available at Faimomet, will be (60) per eent, which agrees nearly with the sillu total.

It munt evidently differ with the nature of the gromed and temperature of the aire, and ean, therefore, not be constant for "wery water--heol. Naked Momentans and (lay absombles water thatm wil covered with regetation.

The - mil, veretation amb atmonphere are mat the only agents of abomption, but at comsiderable protion of the raintall pereolates the gromed, forming subterranean anvents, which are fombl in minco and artwian wella

The following table thow- how mond of the rain is realized in diffierent "hallities in England.

. 1.1 ition,	10 indhers,		38.4 per emt.	
Belfa-t,	:32	"	52.2	tilizat.
Piltom,	50	.	6i1.3	-
Duldin,	4.)	"	50.1	"
Glatgrow,	60	"	40.2	"
Gremock,	60)	"	60.2	"
Huderstiolds,	33	"	53.7	"
Liverpocol,	$55 \frac{1}{2}$	"	43.6	"
Macelesfield,	40	"	52.6	"
Manchester,	37	"	61.7	"
Othliam,	35	"	41.5	"
Paisley,	$56 \frac{1}{2}$	"	54.8	"
A verage,	4512	inchee,	50.9	er cent.

It is, however, to be remarked, that all the water was not measured or collected, in some of these basins.

RAIN FALL.

Table II contains the rainfall as observed at the Pemmervania Hospital, and at the U.S. Signal Service Station in Pliladelphia, and also by Raser and Kendall, at Reading.

It will he ohserved that the Reports of the Peme. Itorpital and Signal Service differ considerably, although the distone between the two rain-gates in Philadelphia is only about 3000 feet. The greatest difference appear: in 1877, when they were respecttively 5.3 and 87.3 , or 8 inches for the par. It will ahon be notieed that the rainfall in Philadelphia is not a relcrant meneme of that in the Schuylkill basin; which is particularly the cate in the two months of July and Augut, this year, 18: x, mamely:

	Philurletphior.	Recerling.
July,	5.31 inclues.	1.653 indhes.
August,	4.83	1.84
Total,	10.14	3.17

The rain in Philadelphia was nearly 3 times as muth as in Reading, whilat the areage in 10 years is nemply same, namely, 46.8 and 47.6 inches, vide Table 11 . The LT. S. Sigmal Service give omly 45.1 inches for the same time.

It may be considered doubtiol if a rain-gimge in a correet measure of the average rain arome any extendeal locality, fors, ats an illustration, we have often very heavy man at Chestmat Hill, whilst not a drop falls in the centre of Philadelphia.

It ean readily be ohserved that when a heave shower falls between a clear sky and the observer, the rain is divided inte stremm or columne, the system of which panes over a narrow strip on the ground; now, if a rain-gatuge should happen to be thereunder, it would indicate a very heavy rain for that locality, but, if the galuge were a few hundred feet from the rain strip, it would indicate, perhaps, no rain.

On aceount of local showers, it is probable that more main falls than is generally indicatend by the rain-gange ; and it will be netieed in the table that the rain was-

$$
\begin{aligned}
& 11.2 \text { inches in July, 187.2, } \\
& 12.3 \text { " } " \text { Angust, } 187: 3,
\end{aligned}
$$

Whilst aromed these figmes the ain is very small ; whence, it may be ammed, that heary somere happened to strike the gange in these twe mats, and than incream the monthly arerage and yarly total.

Tahle II eive the monthly average for cadh grange in 10 years; and also the monthly average of the there ganges in the same time. Thair yearly aroage for 10 years is 16.5 inches.

The (Chief Encineer of the Water Department, Dr. Mereadden, from the Reports of the P'enna. I Inpital, asimmes the average ammal min in Philadelphia to le fos incher, and 3 per cent. more fine "wery 100 fect clevation of the interior ; that is, for an elevation of . 00 fee the rainfall thomla be $45(1+0.15)=51.75$ inches.
TABLE II.

	1869		1870		Philadelphia			$\left\lvert\, \begin{aligned} & 187 \% \\ & \text { Philadelphia } \end{aligned}\right.$			Philadelph1a			$\left\lvert\, \begin{array}{r} 1874 \\ \text { Philadelphia } \end{array}\right.$		
Months		$\begin{aligned} & \text { 荮 } \\ & \text { 䔍 } \end{aligned}$														
January	4.28		4.0	. 97		.	74		. 9.95	. 96	6.0	.	. 03	4.22	5.	3.19
February	4.76	-	2.53	5.88	3.09	3.12	5.83	1.18	1.12	.29	- .61	4.75	5.23	2.82	2.4	64.56
March	5.30		4.06	4.61	5.81	5.81	.2.)	3.78	3.67	2.86	-2. 24	2.04	2.29	1.59	2.16	4.00
April	2.12	-	5.60	6.46	1.83	1.83	1.93	2.50	2.60	3.66	4.19	3.5	5.12	7.51	9.76	64.29
May	4.23	-	6.28	3.91	3.38	3.38	4.10	$\because .81$	2.15	2.86	+.7	5.8:	5.58	2.70	2.75	4.11
June	5.59	-	2.89	5.69	3.77	3.77	6.21	4.22	4.29	3.45	(0.89	0.90	0.61	2.66	3.02	24.19
July	2.88	2.20	3.95	3.74	6.81	6.81	5.13	11.2	9.20	4.43	5.5\%	5.00	8.32	2.76	2.2	53.96
August	1.28	1.02	5. 11	5.58	5.97	5. 92	5.12	8.3.	7.81	6.30	12.3	11.	7.05	6.53	5.6	5.14
September	3.25	4.83	1.71	2.38	1.77	1.77	2.34	3.82	3.66	4.00	4.0	3.5	6.65	3.99	6.01	4.04
October	6.32	9.49	3.89	3.00	4.86	4.86	1.62	5.36	5.20	3.07	5.8	5.20	7.00	1.65	2.81	4.84
November	3.72	1.82	2.10	2.90	4.29	4.09	3.94	3.38	3.40	4.0:)	-5. 00	5.10	5.09	2.23	2.32	3.56
December	5.12	5.4	1.89	2.39	2.26	1.57	$9 .(18$	3.66	2.74	3.:31	1.76	1.38	1.5 2	$\underline{2.25}$	2 18	2.73
Total	48.8	24.8	44.1	0.5	47.3	44.3	6.3	51.1	47.8	1.2	58.3	54.6	58.5	40.9	46.8	48.6

Professor selden J. Cuffin has observed the rainfall for five years, 1856 to 61 , at Eastom, Pal, which gave an average of 45.56 inches. At N:wareth, 7 miles N. W. of Easton, twentyeight monthe' observation, gave 45.32 inches, amual average. At Gettyshurg, Pa. 17 years' observations, 1839 to 55, gave an average of 38.78 inches.

The greatest monthly rainfalls. known in the United States, are at follow:

Locution.	Fear.	Month.	Inches.
Clarleston, A. C.	18.1	Angust	16.9
Port Columbus, N. Y.	1843	August	15.26
Key West, Florida,	1853	June	18.53
Philadelpha, Pas.	1867	August	15.82

The arerage ammal manfall in Philadelphia has been gradually increasing from its minimum in 1819 of 23 inclues, to its maximmon 61.19 inches in 1867 , and is now deereasing again.

RAINFALL PER SQUARE MLLE.

One mile - 5280 feet, and one square mile $-5280^{2}=$ $27,878,400$ square feet $\times 144=4,014,489,600$ square inches, which divided by 231 cubie inches, the contents of a gallon, gives $17,378,742.85$ gallons per square mile, per inch of rainfall.

Mr. Itenry P. M. Berkinbine, reports the Schuyllkill water-shed, by actua! measurement, to be 1942 square miles, which multiplied by $17,378,742.85$, gives $39,7 \cdot 49,518,628$ gallons per inch of rainfall in the Selnylkill hasin.

Assming the arerage ammal rainfall to be 46.5 inches, the total yearly quantity will be
$33,749,518,628 \times 46.5=1,569,352,616,224$ gallons, which divided by 365.25 divs gives an average of $4,296,653,296$ gallons per 24 hours.

WATER A V'ALABLE AT FATRMOUNT FROM THE R,AIN IN THE S'IUUYIKHLL BASIN.

Tha aremere arailable prerentare of the total rainfall in the Schmyllill basin may be ar-mmed to br, at Fairmount, 60 per

 able at Fairmonnt.
'The total quatity of water dan at Fiammont will then loe

Ton fillel the percenterge of the reninjall ill the schmyllitll Bessial arailable at Frairmount.
($i=$ monthly arage gallons of water pasing throngh at F゙airmomit per 24 homm:
$r=$ inches of ratin in the ame month $(i$ is estimated.
\% perentage of rainfall arailable at Fairmonnt.

$$
\begin{aligned}
& \text { Perecontare, } / 6=\frac{G}{11,08 s, 110 r} \text {, } \\
& \text { Galloms, } G=I_{r} \times 11,088,110 r \text {, } \\
& \text { Monthly }{ }^{\circ} \text { rain, } r=\% \quad i_{i}^{\prime}
\end{aligned}
$$

$Q=$ total number of gallons passed through at Fairmount in 1 year.
$R=$ total inches of rainfall in the same year.

$$
\begin{gather*}
\text { Percentage, } \%=\frac{G}{3337,495,186 \mathrm{l}} \tag{4}\\
\text { Gallons, } G=\% \times 337,495,186 \mathrm{l}, \tag{5}\\
\text { Yearly rainfall, } R=3,3 ;, 495,186 \quad \% / i
\end{gather*}
$$

The following Table II I, show: the asorage hydrography of the Schuylkill water-shed, smposing that the momthly mainfall is as in the table, and no flowl or drought interferes. It is not to be expected that such strict miformity of weather will often oerom, but the Table gives the maximmon capability of the river at lairmome, with the average flow of water. The pereentages of avaikable and absombed water will mot hold grow when the monthly rainfall is irregralar, ats will be seen in Table II, is often the case, beewtee the abomption takes nut its -hate first, and whatever is left, if :my, works its way to the river loy gravitation. No allowance has been made for the time ocenpied by the rain-water from its fall to the time it reaches Fairmome; yeur Commission has no reliable data for that allowance.

TABLE III．

Average Hydrugrapily of the somitikili，Basin．

Months			Arailable．		A bastled．		Average jer 24 hours．	
				音			Total in the Sehuylkill Masin．	Dhere nt lairmount．
	Fahr	In h	ol	Inch		In h	（ iallons．	（ialluns．
Jambiny	30	3.	901	2.7	10	1.8	3，270，000，010	$2,943,0000,00$
February	32	3.7	87	3.01	$1: 3$	1.0	4，18．j， 0000,000	：3，4．40，！15）（0）00
March	：31	4.	$7!$	3.16	21	1）．ふ1	1，3．5）（0，000，000	3，4336，50） 0,000
Ipril	50	4.3	（if）	2.81	： 1	1．46	1，8．80，000，000：	：3，1：11， 1000.00 （）
Mixy	（5）3	4．5）	5－2	2.31	4 s	$\underline{-11} 1$	1，900），100，000）	$2,518,1100$（1）0010
Jımi	73	4.6	$11)$	$1 . \therefore 1$	（i）	2.76	5，180，（10），00）	$2,072,(100), 000$
Ju！	76	4.7	32	1.50	（is	：3．2	5，1：0， 1000,1100	1，（635， 40000000
Augnst	71	1.8	311	1.41	70	3.36	5，：2：30，（10）（1），000	$1.5159,00010000$
scptembir	6i3	1．2	3．）	1.15	（i5）	2.73	1，7－30，00（1，0）（0）	
Octuber	52	3.1	5－	1.7	is	1．（i；）	$\therefore, 7010,10)(1)(1)$	$1,922,0000,0100$
Novemlir	：3）	3.	－2	2.16	2s	11.84	$\therefore 3,37.5,(10),(10)$	$\because .12!$ ，（1）01，（0）
1）¢－4．uber	3 s	$\because .5$	8.5	2．1：	1．）	11.33		$2,312 .(1)(1)$
I verare	5） 1	3.87	60	$2 . \because 2$		1.55	1，2555， $1(100,(10+1$	
＇Total，		16.5	－	27.9	18.6	－		

F゙，\RAOOCNT．

The minimum flow at the fairmomet Dam，may be taken to Ixe that in the monthe of Angust and tiptember， 18 si？！，when the dam wat drawn down 3 feet below the comb，by which naviga－ tion on the Camal wats stopped．

The height to which the water is pmulerl，into the Corinthian Reservoir，is 11.5 feet ；and 90 feet into that of the Fairmonnt； the average of which is abont 100 feet when the water is low in the basins．

The average height of fall when the dam was drawn down as above stated, was say 7 feet, and at the same time the wheels run at high tide, and stopped at low tide. The number of gallons required for pumping one into the reservoirs, must then have been $100: \bar{i}=14$ gallons theoretically and at least 80 per cent. more, say 25 gallons.

The minimum quantity of water pumped in August and September, 1869, was, aceording to W. D. Report, 16,447,000 gallons; average per 24 hours, say $16,000,000$. From these data we have the minimum flow of the Schuylkill to be $400,000,000$ per 24 hours.

Mr. Birkinbine has estimated the minimum flow of the Schuylkill to be $200,000,000$ gallons per day.

Mr. James F. Smith, Chief Engineer of the Schuylkill Canal, in his report to President dowen of the P. \& R. R. R. Co., says $245,000,000$ gallons is the minimum flow.

The Schuylkill Canal Company has several times measured the minimum flow at the lowest state of the river, namely :

$$
\begin{array}{rr}
\text { In August } 1816, & 200,000,000 . \\
1825, & 440,000,000 . \\
\text { Later, } & 400,000,000 .
\end{array}
$$

The ammal rainfall wats gradually increating during those years.

These minimum flows were measured by the cros-secetion and velocity of the water, in a regular portioni of the Canal above Manayuk, when the river was lowest, and are probably the most correct measirements on rerord.

The minimum flow given by Mr. James F. Smith, was obtained by weir measurement at the different mills at Manaymen, and caleulated by the Francis formula.

The Francis formula is, no doubt, very correct for :a constant head over the weir, but when the head fluetuates, it will not be correct to take the mean head h, but the mean of $h_{1} h$. The average of h_{l} / h can be obtained only by an indicator diagram of h, or its equivalent, which Mr. smith and the Commission of Engincers, 1875, did not use.

Your Commission inclines to believe, that the minimum flow of the Schyitkill at Fairmome, within the lant 62 years, has not been much less than $400,000,000$ galkons per 24 hours. There would be no difficulty in determining eorrectly the minimum flow of the Schnylkill, if proper and reliable records were kept by the Water Department.

FLOW OF TIIE RIVER SCHUYLKILL, BY THE CHIEF ENGINEER OF THE WATER DEPARTMENT.

\&2. . In his Report for 15% th, the Chief Engineer says on page S, thet he hes given re tuble of the slaily flow of the River schuyllill and its volume. On what page is this table:"'

Your Commiscion finds the statement referred to on page 8 , hat cammot find the mentioned table in the Reprert, and we are convined that the Chief Engincer emmet give such a table, for the reaten that the reeords kept for that prappose in the Water Department, are inadequate. A table i- given on page 122, giving the height of water ower the comb, and alsen that were and moler the flasth-burd, hut there is mething sabl about the time and extent of hreaking dewn of the flath-hward : onher data bearing men the same sulyere are alon wanting.

In the Witere Department Repert fir 187t, at talle is given of the Leight of water over the weir at Fairmemet, for the vears 1815 (1) 1A5t, which is called Average Momthly overglow at Fuirmomet Dan. Thi- table gives the average overflow for the
 whil-t the fact i- that mot a drop of water flowed ower the dam in then two mont la-, lint the aserage height of water was 3.11 and $5.9:$ inche beluer the comb).

INFLUENCE OF TIDE ON THE WATER-POWER AT FAIRMOUNT.

8.3. "What is the relative efficet of the Tides, Ebb and Flood, on the Water-Power at fairmount?"

The ebb and flood of tide-water is caused by the difference of attractions on opposite sides of the earth's surface of the sun and moon, the philosophy of which is not necessary to enter into here, exeept as far as regards its effeet upon the water-power at Fairmount, where the average difference of tide is 6 feet, maximum, 8 , and minimum, 5 feet. The variation of difference of tide is caused by the relative positions of the sun and moon in reference to the earth. This variation is also affected by the direction of winds, which may inerease or diminish the maximum and minimum.

Although the sun's attraction on the earth is 195 times greater than that of the moon, but his differenee of attraction, on opposite sides of the earth, is only one-half of that of the moon, and as it is these differences which cause the tide, we must ealeulate its cflect by the motion of the moon only.

The moon passes the meridian at intervals of $2 t$ hours, 48 minntes and 50 seeonds, in which time there are two ebbs and two floods, of 12 h .24 m . and 25 s . each ; that is, 6 h .12 m . and 12.5 s . of ebb or flood between the times of each mean-tide. The above are the average times; the aetual times are rendered variable by the ercentricity of the moon's orbit.

The question before us bears direetly upon the economy of ruming the wheels at Fairmount at high and low tides, in answer to which it is nevessary to determine the average height of tide abowe and below the mem-tide.
$r=$ double the difference of angle generated by the rotation of the earth and moon, around the earth's centre, omitting the earth's rotation aronnd the sum.
$t=$ time from that of mean-tide to the moment when the height or depth of water-surface, above or below mean-tide, is required.
$T:=$ time between mean-tide and high or low water. T'and t, can be expressed by any unit of time, as hours, minutes, or seronds.
l: = height or depth in feet of the water-surface, above or below mean-tide, at the time t.
$h=$ height or depth in feet of water-surface, above or below mean-tide, at high or low water.
$I=$ mean height of dam over mean-tide.
$H^{\prime}=$ actual head of fall at the time t.
Reference being hand to the areompanying illustration, in which the letters corre-pond to these notations.

$$
\begin{align*}
& \text { Monn's angle, } v=\frac{90 t}{T} \tag{1}\\
& \text { High, } \quad k \quad h \sin \cdot v \tag{2}\\
& \text { Height, } \quad H^{\prime}= \\
& H+h \sin . v,
\end{align*}
$$

The aserage head of fall hetween mean-tides, at low water, will be.

$$
\begin{equation*}
\text { Head, } I^{\prime}-I I+\frac{2}{3} h \text {, } \tag{4}
\end{equation*}
$$

The average head of fall between mean-tides, at high water, will be

$$
\begin{equation*}
\text { Head, } H^{\prime}-H-s_{s} h \text {, } \tag{5}
\end{equation*}
$$

In the applieation of these formulas to the operation at Fairmomet, we have given the height of the flash-hoard 12.4 feet above mean-tide, and suppose the water in the dam to be kept, on an average, 4.8 inches below the plank, as has been done this summer, 1878 , we have $H=12$ feet, the height of fall above mean-tide.

Assuming the difference of tide at Fairmount to be 6 feet, we have $h=3$ feet above and below mean-tide.

The average head of fall between mean-tides at low water will then be formula 4.

$$
\text { Head, } I^{\prime}=12+\frac{3}{3} \times 3=14 \text { feet. }
$$

The average heal of fall between mean-tides at high water will be formula $\overline{\text { on }}$.

$$
\text { Head, } H^{\prime}=12-\frac{2}{3} \times 3=10 \text { feet. }
$$

Now, we have the proportion of economy in running the wheels at high and low tides to be as $14: 10$, which is 40 per eent, in, favor of ruming the wheels at low tide. It is therefore evident that all the wheels should be running at low tide, and stopped at high tide, when it is necessary to economize the water-power ; that is, when the supply of water is scarce.

The head of fall at low tide is 15 feet, and at high tide 9 feet, $15: 9=1.66$. The power for pumping at high tide is to that at low tide as $1: 1.66$, or 66 per cent. in favor of low tide ; but this percentage is only momentary, and cannot be counted upon as an average.

The Commission of Engineers, 1875, says (page 20 in their report): "The depth of 16 inches over the area of the Fairmount dam, (480 acres,) beeomes a storage reservoir, in which the water is retained, and permits the wheels to be stopped at and near high tide, when the power is least, and started at and near low tide, when the power is greatest. This is the proper manner of running the whecls at low stages of the water; by pursuing it, more water is pmomed, than if the wheels are run constantly."

That Commission thus gives its opinion, that it is best to run the wheels at low tide and stop them at high tide, but éives no data or faets as to what is the value of the difference.

This is the doctrine you, (Mr. Janes Haworth,) have been advocating for the last nine years-the fruit of which begins to ripen at Fairmount.

The accompanying illustration represents the head of fall at Fairmoment, at any time between meain-tides, during two convolutions of high and low tides, which ocenr in average periods of 12 hours 24 minutes and 25 seconds each.

This time, as representel by the illustration, is divided by ordinates into 4 equal partw, between mean-tide and high or low water, making 16 divisions for cach convolution.

The time T, from mean-tide to high or low water, is at Fairmount, on an average, as follows:

From low tide to mean-tide,	$T=2 \mathrm{~h} .36 \mathrm{~m}$.
From mean-tide to high tide,	$T=2 \mathrm{~h} .36 \mathrm{~m}$.
From high to mean-tide,	$T=3 \mathrm{~h} .36 \mathrm{~m}$.
From mean-tide to low tide,	$T=3 \mathrm{~h} .36 \mathrm{~m}$.
When the tide is rising,	$T=156 \mathrm{~m}$.
When the tide is setting,	$T=216 \mathrm{~m}$.

The following illustration is constructed with ordinates, at intervals of 39 mimutes, when the tide is rising, and 54 minutes when setting:

Example: Required, the height of water above mean-tide at 39 mimutes after the time of mean-tide.

$$
\text { Fぃurmmla 2. } \quad v=\begin{gathered}
90 \times 39 \\
156
\end{gathered}-22^{\circ} 30^{\prime}
$$

Formula 2. $k=3 \times \sin .22^{\circ} 30^{\prime}=1.148$ feet, the height reeruired.

Surface of Fairmount Dam.

It is readily perceived at the first glance at the above illustration, that the water-wheels ought to run only at low tide, and stop at high tide, when water is scarce in the river, the result of which will be 40 per cent. more water pumped into the reservoirs, with an equal amount of water passing through the wheels.

The following Table IV, corresponding with the formulas and illustration, shows the height of tide and head of fall at each division or ordinate. The average head for high and low water is represented by the dotted lines in the illustration, which occur 25 minutes before or after mean-tide, when the tide is rising, and 18 minutes before or after mean-tide, when the tide is setting.

TABLE IV．

Effeger of Tide Water at liammount．

$\begin{aligned} & \text { 㙳 } \\ & \hline \end{aligned}$			Aligle．	Sibe for Angle：	Heights， k and h ．	IIeights， H and H^{\prime}	Remarks．
N	h	m	r°	Siuc	Feet．	Fept．	
0	1		00	0．00）	0.000	12	Meun－tide risingr．
	1		2！ $2 \frac{1}{2}$	． 3×27	-1.148	10.85	
－	1	18	45	． 7071	-2.121	9.88	Me：m high tide．
，	，	57	672	．92339	－2．772	9.23	
	\because	$\therefore 6$	90	1.000	－3．000）	9.000	High tide．
i）	3		1121	． 9239	－2．772	9．23	
6	4	$\because 1$	135	． 7071	-2.121	9.88	Meun high tide．
，	5	18	$156 \frac{1}{2}$	$\therefore 8827$	－1．148	10.85	
¢	${ }^{6}$		180	0.000	0.000	12.00	Me：n tide setting．
）	7		$\because(1) 2$ ？	． 3827	＋1．148	13．15）	
10	8	(1)	225	． 7071	＋2．121	14.12	Me：n low ticke．
11	8		2171	． 9239	＋－2．77－	14.77	
12	9	48	270	1.000	＋3．000）	15.010	Low tide．
	10	27	2921	． 92339	＋2．752	14.77	
	11	6	31.5	． 7071	＋2．121	14.12	Mean low tide．
	11	45	337 ${ }^{1}$	． 3827	＋ 1.148	13．15）	
	12	21	360	0.000	0.000	12．00	Me：m－tide rising．
	1	3	2ご $\frac{1}{2}$.3827	－1．148	10.85	
	－	42	45	． 7071	－2．121	9.88	Me：m high tide．
	$\stackrel{1}{2}$	21	$57 \frac{1}{2}$	．9239	－ $2.77{ }^{2}$	9.23	
	3	（1）	！ 10	1.000	－3．000	9．00	Hight tide．
	3	51	$112 \frac{1}{12}$	．9239	－2．712	9.23	
	－	48 42	135 1561	． 7071	－2．121	9.88 10.85	Mean high tide．
	（i）	3 ${ }^{\text {a }}$	$180{ }^{2}$	0.000	（0．00）	12.00	Me：artide setting．
	7	30	$20 \cdot 2$	． 3×27	＋1．148	13.15	
	\therefore	21	205	． 7071	＋2．121	14.12	Mean low tide．
	9	1s	$\because 171$	．92：39	$+2.772$	14.77	
	10	1：	$\stackrel{1}{2}$（1）	1.000	＋ 3.000	15．00	Low tide．
	10	51	2！） $2 \frac{1}{2}$	．92339	＋2．772	14.75	
30	11	30	$\therefore 1.7$	． 7071	$+2.121$	14.12	Me：m low tide．
	12	11	：3：37 $\frac{1}{2}$	．3ボ2ア	＋1．11s	13.15	
	12	（1）	360	1.000	0.000	12.00	Me：m－tide rising．

THEORETICAL AND PRACTICAL EFFECT OF PUMPING WATER.

3.4. "IFow many gallons of water are required (both practicully aul theoretically, for pumping one grellon 105 feet high, both at F"airmount aul Flat Rock Iomes:"

Divide the height to which the water is to be rased by the height of the waterfall, and the product will be the number of gallone rergured to lift one gallon the given hoinht therretically.

For example: The average fall of the Fairmount dam is 12 feet, which divided into the height, 10.) feet, gives the theoretieal amount of $8 . \overline{\mathrm{T}}$ gallons to pump one into the reservoir.

The waterfall at Flat Rock is about 24 feet, whieh divided into 10\%, erives, theoretically, 4.44 gallons for pumping one gallon to the same height.

The mumber of gallons pratetioally required, depends upon the enenstruction of the motor, which erenmally utilizes form 5o to 80 per eent. of the natural effect.

Assmming that 60 per cent. of the powser is utilized, the prasetieal results will be

$$
\begin{aligned}
& \text { It Fairmome, } \frac{105}{12 \times 0.6}=14.6 \text { gallons. } \\
& \text { It Flat Rock, } 105 \\
& 24 \times 0.6=7.3 \text { gallons. }
\end{aligned}
$$

This does not iuchude leakage of pump-pistons and valves, which further inereases the momber of gallons to an mulimiter extent, depending apon the mondition of the packing, \&e., de: Nor does it include the diameter and lengetlo of the main pipe and the angles through which it runs, which may double the amonnt.

WATER-P()WERATFLAT RO(K ANI FAIRMOUNT.

85. "Whet is the water-pumer of the Schuyltill Jiver at Flat Liock alud Frairmount Dams? Whet portions of thet poued are comsumed b!f the Comal coud Mills at Manctyumk? Aul how much of it is ravilable for pumpenge at both places:"

- Also, to what extent call thelt pouer be increased, when mecessary in the dry soceson, by impommeling drems? "9

The water-power of the Selmelkill river varies with the seasons of the year, and the amount of rainfall.

In the smmer months, water rarely flows over the dams at Flat Rock and Fairmoment, hut the water-surfaces are generally several inelhes below the flash-bourds, and all the power of the Shluylhill is ennsmed ly the mills: and canal at Mamamenk, and by the water-works and camal at Fairmoment.

FAHRMOUNT WATER-WORKS.

The maximum pumping capacity of the present Fairmount water-works is $35,000,000$ gallons per 24 hours; which require, at least, $700,000,000$ grallons for motive power, or 1500 horses. Alont one-half of this supply, of $17,5(0), 000$ grallons pmoped by $350,000,000$ of 750 horse-power, may be relied upon at times of minimm flow of the river. Therefore, to aceomplish the full operation of the Fairmonnt water-works in times of drought, $350,000,000$ grallons minst be supplied per day, from impounding dams, for, say 60 diays. 11 mere, $21,000,000,000$ gralloms will the the required capacity of impomeling dams; and in like proportion for a longer or shorter time of dronght.

MANAYTNK MHIN

In the year 1si-t, Mr. James li. Smith meaned the water con-mmedl lye earth mill in Manaymk during the period of extreme low water, from the ed to the 16 the of september, when it wats neecossary to stop) some mills part of each e2t hours, in order to lieep the water sufficiently high fir navigation.

It is also customary at Manayunk, when the river is very low, to use the water only by day, and let it collect by night ; therehy there is no water supply to the Fairmount dam at night, except from the Wissahickon and other streans, or the leakages of the canal and Flat Rock dam. The flash-board on the Flat Rock dam is for the purpose of collecting water at night.

The following is the consmmption of the mills, ats measured by Mr. Smith, in cubie feet, per 24 hours:-

Cubic feet.
No. 1. Dexter Mills, 624,720
2. Economy Mills, $5 \$ 7,000$
3. Schuylkill Mills, 2,749,000
4. Inquirer Paper Mills, 3,452,400
5. Ripka Mills, 4,686,300
6. Eagle Mills-not in operation.
7. Arcola Mills, 1,397,220
8. Wabash Mills, 294,060
9. Brown Roofing Paper Mills, 826,200
10. Schofield Mills, 756,000
11. Mount Vernon Flour Mills, 457,000
12. Flat Rock Paper Mills, 6,167,340
13. American Wood Pulp Works, 4,972,500
Total, 26,919,880
Cancel for 18 lockages, 875,460
Lockage from Flat Rock and canal, 5,020,000
Total minimum flow of the river, $32,815,340$

These quantities converted into gallons of 7.48 per cubic foot will be as follows:-
For all the Mills in Manayunk,
For leakage in Canal,
Lockage,

Cotal gallons per 24 hours, | $201,360,692$ |
| ---: |
| $4,548,440$ |

The only data attainable for finding the artual water-power of the Schuylkill at loarmonnt, is by the amount of water pumped ints the reservoir, and by the height of water flowing over the dam.

Allowing 15 gallons of water for pumping one into the reserwoir, we obtain the volmme of water passeed throngh the works ly multiplying the pumpage ly 15.

Yome commis-ion, however, had reason to believe that much more water passed throngh the works.

The grange is placed in the forehay, which level differs from that in the dam, depending upon the mumber of turbines ruming.

The Chiof Engineer of the Water Department informs your Commis-ion that, "The tahles in the Reports are made from the average of there daily readings of the grauge in the fore hay, with no "orrections."

For the last three years tables are given for the average height of water flowing over the dam for every day of the year, whech is an important improvement ; but, unfortunately, the explanation arcompanying these tables makes their eorrectness donbtfinl.

In the table for 1875 the height of the dant is given aloove the new comb, and not by the gauge in the forelay. The new combl is 9 inches above the ohd comb; and the flash-board 11 indes above the new, and 20 inches above the old comb.

In the table for 1873 , the height of the dam is given aloove the old comb, which is said to be 20 inehes below the top of the filsli-board.

In the table for 1877 , the height of the dant is given above the old comb, which is the same as the reading of the gange in the forebay ; but it is stated that the flash-board is now 22 inches above the comb.

The flath-beard is the same height over the (eomb) now at it hats been for many years.

The zero on the gauge in the forelay is on the level of the old comb).

Your Commission hats obeerved the differene of height hetween the flash-board and zero of the grange as follows: when the
water stood $15 \frac{1}{2}$ inches on the gauge it was 3_{2}^{3} below the flashboard, making a differenee of 19 inches; but the water-surface in the forehay is 1 inch lower than that of the dam, which makes the difference 20 inches and not 22 , ats stated in the Rejort for 1877, hm it is mbly 19 inches as read form the watere.

Table V is dedueed from the Wiater Department Renorts, and it will be observed that the flow over the Faimonut dam has been reduced in the Reports from 11 . 68 inches in 1870 to 2.82 in 1877 , whilit the minfalls for these two years are nearly alike, or a little more for the year $187 \overline{7}$. The fact is that there is no such reduction in the flow of the Schuylkill, but the records of the Water In partment are eviclently wrong.

TABLEV.

Dax at Fanmortor

	1867	186.5	1869	$18 \% 0$	1871		3		1575	1876	1877
Jan.		8.54	17.5	19	6. 37	4.68		11.67		5.00	3.40
F'eb.		4.16	17.83	17.16	$11 / 16$	3.35	2.15	7.57	5. 78	9.10	5.51
Mareh		18.00	13.03	15.60	17.18	(0.11)	12.26	9. 32		11.90	5.35
April		13.53	11.30	18.80	(6.3ti 1	11.161	14.95	11.07	5. 20	7.71	0.23
May	11.5	113.85.	9.62	9.30	9.2?	5. $32=1$	12.95	9.91	0.00	0.43	0.45
June	8	11.23	9.00	10.80	10.13	42	0.56		0.10	0.90	1.60
July	7.0	8. S \%	4.5	10.24	9.97	3.92	1.15	4.67	0.10	(1.16	1.80
Aug.	15.8	,	-3.11	9.4.5	(12) 21	10.016	15.29	2.52	9.00	0.06	0.40
Sept.	8.6	13.42	-5. 93	4.12	13.51	11.7.)	$5 . \overline{\text { ¢ }}$;		1.13	4.10	0.53
Oct.	12.1	11.73	19.00	7.35	10.37	9)9\% 1	14.39	3.32	0.15	1.10	3.50
Nov.	10.5	16.48	14.60	7.11	11.4 .81	16.66	9.73	1.2	4.53	5.70	8.65
Dec.	8.7	11.93	19.65	9.11	7.19	4.42	9.00	9.01	(6.55)	1.2	2.40
İm	10.75	11.103	10.55	11.64	10.51	7.19 4				3.91	. 82
Rainfall	61.19	51.10	48.86	41.10	1732	51.12	58.2	(1). 2	41.51	19.	5.15
Temper.	59.60	53.19	52.5	$51 ; .81$	5.14	, 16	51.4	0.26	30.	52	

Loun Commisan attempt al to calculate from data in the

 colation gave the diacomating remilt of only is per eent. The alomare flum ixer the Fairmomit Dam, in 1877, is the smallest
 near up th the the metical capacit! of the works.

The oftemtite of water flowine orep the dam, is determined as follow:
$h_{1}=$ hemght of watw in feet ower the werir.
I. withly of thr weir in fert.
I. mean velocity in feet per seemed of the water ower the weir.

" area in sumare liet, of the emomention of the water ower the weir, metsured muler the level anface.

From the lats of gravity; we hate the requeity of a falling booly til be

$$
\begin{equation*}
\text { Velocity, I } s, h . \tag{1}
\end{equation*}
$$

Ditheremtial area, $i=\quad$ Lih, 3
(2untity of water: ? " V .

- Jonert the formulas 1 and :3 for $1^{\text {rand }}$ "an formula 1 , and the diflememial gramtity of water will be

$$
\begin{equation*}
i \vartheta=L i h \&, h=\& L h_{i}: i h \tag{万}
\end{equation*}
$$

Quantity water, Q $\int \& L h^{2_{2}} \mathrm{i}_{1}-\frac{8 L h_{1} h}{1.5}$

This should be the 'prantity of water, in cubic feet, passing over the weir per seeond, if there was no contraction of the vein; but the overflow is contracted on at least two sides, namely : on the top and bottom, and it may also be contracted on the edges of the vein. The sinking of the upper surface over the weir, is camsed by the lower strata having a greater velocity than the upper one, the result of which is, that the lower layer increates the velocity of the next upper one bye cohesion, and there is not hearl enough at the upper part of the vein to supply water for the increased velocity.

The coefficient of contraction for an ordinary vein contracted on four sides is 0.64 , or ten per eent. on each side; bint a vein flowing over a weir is contracted on only three sides, for which the coefficient is 0.72 , and the surfare over the weir sinks 0.17 leaving the coefficient $0.72-0.17=0.55$ for the overflow. Therefore, the true quantity of water, in cubic feet, flowing over the weir per second will be

$$
\begin{equation*}
Q=\frac{0.55}{2} \times \frac{8 L h_{V} h}{1.5} \tag{7}
\end{equation*}
$$

Quantity of water, (2 - 2.93 $\mathrm{JJ} / \mathrm{h} / \mathrm{h}$,
This formula applied to the weir at Fairmomnt Dam, should be transformed to gallons (of $2: 31$ culbic inches) flowing over the weir per 24 hours, and the height h converted into inches.
$L=: 1112$ feet, width of the weir at Fairmomint.
Conversion $h / h=12 \checkmark 12=41.5692$.
Coeffi't $=\frac{1112 \times 60 \times 60 \times 24 \times 1728 \times 2.98-50,657,779 .}{2: 31 \times 41.5692}$
This is the coeflicient for h_{l} / h. It is a little smaller thans that of Mr. Jos. B. Francis, of Lowell, Mass, who, hy experiments, obtained $50,928,819$, which is only one per cent. more. The coefficient derived from the formula of Box, which is preferred by the Water Department, is $51,305,011$, or for English grallons 23 per cent. greater.

Your Commission has decided to use $50,000,000$ as coefficient for the water flowing over the Fairmome Dam.
$G=$ gallons of water passing over the Fairmomet Dam per24 homs.
$h=$ height in inches of dam over the flash-hoard.

$$
\begin{equation*}
G_{i}=50,000,000 \quad h_{1} \cdot h \tag{9}
\end{equation*}
$$

The fermula for the water flowing over the old lock at the (:mal, is

$$
\begin{equation*}
!=600,000 h_{1}^{\prime} h, \tag{10}
\end{equation*}
$$

The value of $h_{V} h$ is calculated in table Vi for different heights, h in inches and tenthe of an ineh, which, multiplied by $5(0,000,000)$, gives the galloms of water flowing over Fairmount Dam per 24 homrs.

The tabular number multiplied ly" 2.93 L , gives the cubic feet of water flowing over any weir of width L.
'Table VII shows the number of millions of gallons flowing over the Fairmount dam per 24 hours, at different heights of water, in inches over the weir.

Example. Suppose the height h over the weir is 12.3 inches, for which the tabmlar number is 2157.2 , which means $2,157,200,000$ gallons flowing over the dam per 24 homs.

HYDRAULICS AT FAIRMOUNTT.

The hydramlics of the Fairmount Dam and Water Works, are represented in Table V1II, for the year 1877. A similar table had leen calculated for each year from 1867, or for cleven yems, but on acemut of uncertainty of the data in the W. D. Report, these tables are mot considered sufficiently eorrect for this report, for which reason only one of them, acempanies it as a sample.

The seend column in table VIII, eontains the average height in inches of water flowing over the dam, but not as given in the W. D. Report, but two inches has been added, and your Commission has even eonsidered the propriety of adding 3 inches, allowing one inch differenee of level of the dam and the forebay.

The next column contains the average gallons of water flowng over the dam per 24 hours, caleulated for the average of h_{V} / h. It will be noticed, that the quantity of water does not correspond with that due to the height h table VII. For instance, in the months of August and September, the average height on the dam was one ineh, which corresponds to $50,000,000$ gatlons, Table VII, but here is given $98,000,000$ and $85,000,000$ This difference is obtained by the average of $h_{V} h$.

The column giving the total quautity of water pasing through the Schaylkill at Fairmount includes:

1. The water flowing over the dam.
2. The water consumed for the pumpage, 20 gallons for each gallon pumped.
3. All the water pumped into the reservoirs by all the Works, except the Delaware.
4. The water consumed by lockage in the canal, averaging $6,000,000$ gallons per day for 9 months.
5. Leakage of the dam and flow over the old loek, $6,000,000$ gallons per day. With all this, only 65 per eent of the water* flowing in the Sehuylkill is aceomed for; a great part of the remaining 35 per cent, no doubt flows through the water works, whilst the wheels are standing still, and the rest through the broken down flash-boards.

The pereentage of rainfall available at Fairmount, as given in the next to the last column, is not expeeted to be correet, but it only demonstrates the ineompleteness of the records in the W. D. Reports.

The horse-power column means the natural effect of the waterfall, and not that transmitted by the turbines.

39

TABLil：Vl－Valuz of h y for Weir Meastraments．

TAble Vil．－No．of Mhlions of（iahions flowivi；over fiabmout Dam．

0	00		4.4700	8．2150	12．6is	17．6sn	23.235	90	35	42.655
	50.000	57.64	65．725	71.150	52.825	91.55	101.19	111） $2=$	120.79	1309
	141．42	152．14	1＋3．3．15	171：11	185．（0）	197.93	9199，4：3	2．21．4	23.134	246.9
	259． 51	－20！	209 21	2919．73	313116	327	2.11 .53	355.5	351.37	385.
	100．（k）	415 （19）	1.30 .37	145.38	113．12	17.	493：29	504.15	－	512.3
	5.9	5．7．（0）	512．3x	lios sis	627．50	W415	（6i2．！ 10	（imen 50	（694．7	716.5
	731	－	731.	Tomes	40960	424.75	4.47 .5	836.15	4n： 7	000
	921.10	（1） 3 20		1465	10166^{\prime}	10270	$1(177.5$	1063． 1	1093.7	1110.5
	11：31．：	11^{-1}	1171.1	119	121	123！	12131	1243.2	1307	1327.
	1.350 .11	13%－	13015	141．：1	1111.6	1161	114.3	1510.5	1533.	15.57.
	1.581	1＋15；	$16 \pm \sim$ ． 5	16.53 .0	1075.9	171）	1725．	1750.0	1781.7	1799.
11	18.1	1414	1471.2	1439.5	1921.7	$1: 50.0$	19750	2000.9	$20 \geq 7.4$	205
	205	21145	21.6 \％	21－5．2	－1433．7	22019	2336	206：	2×100	23
	$\because 313$	？ 270	2いち！	－105	21.5	$\because 140.0$	2196.7	2535.3	2503	2591
	－514	2い1）	30．．． 1	2703.7	27.20	2Tヶハ！	27ヶ9！3	2ヶ1s．1	2516．	25π
	204.7	－15；	－ 4 （\％3． 1	21！ 51.2	3021.9	30.1 .1	3041.7	3110.3	3110.	3170.
	1－4t？	Sesmi	3：3 211.11	3ご（1）． 1	33321）．6	33.51	3.3 .41 .6	3112.3	3412.8	3173.
17	$\therefore 01$	W号	Sistiti．	35：7	8te？	Pritut	81.91 .7	3723.1	37517	11
	1110	ir111	4－5！	39112	39 11，5	3975	1010.5	1013.2	4075.7	110
	1110	1173	12146	12：39．1	1272．	130.5	$1.33-6$		4395.5	413
	1た	4is，	1730	15\％． 1	$16 i \%$	1610	1674	1709.0	4743.1	4 4i
	4811	1416.1	¢－6）． 7	1915.1	19.50	19.81 .5	5001.9	5051.5	5049.5	12
	315	5191	－．．．011	526.1	5\％00（1）	5335	53.30 .5	5407.5	5447.5	5，
	5.215	565？	－ハ¢．．5	aill 1.6	$5(5) 5$	5udito	5731.5	57：99．）	5806.0	$5 \mathrm{~s} \cdot 10$
	58%	6：17．8	54， 3,11	59－91．5	（i0）	60	10，		61	6212

W゙ATER-P(OWER AT TIIE FLAT ROCK DAM, OR MANAYUNK.

Thes-mphas water flowing over Flat Rook Dam, above that (0) m- umal he the mills and canal, is about equal to the overflow at Fodromount, beamse the Water-Wrorks consmme about as much mope water than the mille, as the supply from the Wissahichon; -and the water-power at Flat Fock ought to be ntilized for supplying the City with pure water.

All invotigaters of the water in the Fairmount Dam, in a simitury point of view, agree, that the impuritics thrown into the river at Mamamik, are very iujurions. This serions evil can bre avoided by pmoming water from the Flat Rock Dam, for the (ity supply: 'There is an excellent location for WaterWirln, between the canal and the river, a few hundred fiet belour the falls, or near the seond lock.

If artage ment could be made between the City and the Reading Railroad Company, for a lease of that gromed and water-power, it would make the best water-works in Philadel$p^{\text {piia. }}$

The head of fall at Flat Rock is about double that at Fairmoment, and fire from tide-water.

The dim between the guard lock and the seeond loek, would answer for the water-works, and could easily be colarged, if neeessing: In cate all the water-power now used at Mamayunk could be rented fire the-e water-works, one or two mains of not less than five feet in diameter, shouht be laid along the river to atus stomage remervoir provided therefor.

The plan ron have surgested, mamely, to raise and widen the (wnal, from lilat Rock, and erect water-works at the lower part of Manavink, deserves comsideration.

Thun- Flat Rock and Fairmount Water-Works would be sulticicut to supply Philadelphia with plenty of water, for a great many years to come, without the aid of stean-pumping, as you have surgested.

RESERVOIR ON GEORGES RUN.

8. "Could not the Valley of Georges liun at some suituble point, be utilized for a stornge reservoir?","

Your Commrission has examined the loeation referred to, and thinks it feasible to build a retaining wall or embankment aeross Georges Run, at some point near the crosing of the proposed N. 50th and Dauphin Streets, or above Bryn Mawr.

The ground appears to be favorable for retaining water, but your Commission has made no survey of the place, and can therefore not estimate the cost and eapacity of such a reservoir.

Mr. James F. Smith, Chief Engineer of Schuylkill Canal, proposes to build Water-Works on the west side of the Sehuylkill below Flat Rock Dam, and lead the water to some storage reservoir on the hills, so elevated as to permit the water to be carried to Belmont, or any other reservoir on the west side of the river.

This proposition is similar to that previously made by yourself, namely, to build a retaining bank over Georges Run, to form a natural basin for a storage reservoir.

There are several other locations on the west side of the river, where, as you have suggested, natural basius could be constructed high enough to supply Philadelphia with water, pumped by water-power either from Flat Rock, or from Fairmount Dam.

The plan you have suggested, namely, to raise the Delaware and Corinthian reservoirs, for supplying Fraukford with Schuylkill water, by water-power, would, no doubt, answer.

Frankford could be supplied direet from the East Park reservoir, and, still better, from the proposel Cambria reservoir, which would be at least 20 feet lighes.

The location of the proposed Cambria reservoir is marked witlı red ink, cast of Laurel Hill, on the Distributing Map made by the Water Department, and presented to your Commission.

PERKIOMEN IMPOUN゙DIN゙G DAM.

The ('ommision of Einginers of 1875 , estimated the capraty of an imp ounding dam on the Perkiomen, for the purpose of supplying Philadephita with water by gravitation, and proposed to tix the water-rise at 70 feed, with 2.5 feet to be drawn ont, which would fiminisla $10,0(0),(0) 0,000)$ gallons: of avalable water, exclusive of two feet in depth allowed for evaporation.

The total eapacity of this reservoir would probably be $20,000,00(1), 000$ grallans.

The water-shed of the l'erkiomen is estimated at 220 squate miles above the proposed dam, and the ammat rainfall 48 inches at (i) per exont. will be 28 inches availahle, of $109,000,000,000$ gallom- per atham, which is a daily average of $: 300,000,000$, grallons. The propered dam is, therefore, much too small for its water-shed, but eould be inereased to, perhaps, double that
 at least three-quarters of the ammual raintall, orsay $80,000,000,000$ gallons.

The height of 70 feet proposed by sated (onmmission, was intended only for a dam to supply water direct by gravitation, to the East Park Reservoir, and not for water-power at lairmount.

The maximum eaparity of the present water-worls at Fairmount is $35,000,000$ galloms per day, with full wattr in the river ; and the minimmon (apacity in the dry seasom is $16,000,000$. Then, for the full "apacity of said work in the dry season $35-16=1!, 000,000$ gallons per day mast be pumped by storewater from impounding dams. With the present extravagant waste of water-power at Faimonnt, 37 gallons for pumping one, would require $37 \times 19=703,000,000$ gallons per day from impounding dams, and $80,000: 703=113$ days supply from the lerkiomen. With properly proportioned pumps and turbines at l'airmount, and with the aid of the Perkiomen dam, the City
could be supplied with at least $80,000,000$ gallons of water per day, the whole year round.

With adequate water-works at Flat Rork, this atmoment womld agmin be more tham donbted, or $180,000,000$ wallons conld be pumped per dy, hy water-power alon: In tho ('ommisioners'
 acomut of existines and proposel impombling dams in the Shaylkill Basin, namsly, as follows:

Your Commission believes, that the cheapest way of supplying Philadelphia with water in the finture, would be to build water-works at Flat Rock, and an impounding dam on the P'erkiomen, which, together with the present, would be suflicient until the end of this century. In the year 1900, mains from the Perkiomen to Philadelphia, will be required for supplying sater by gravitation, $2: 50,000,000$ gallons daily.

（OS゙りOH PERKIOMEN DIM AND（BR．IVITATION sl户P1，


```
    |l'|ritution:".*
```

 an inpromming dam on th．Perkiom ne raicial 70 fect，at

（OMMENTS B）JAMEん F゙，SMTTH（ON NYTROM＇S

of weater．C＇all this be expllainul！＂•

The calathations reformed to were batal upon data given in Water Deparment leprots；nambly，the height of water flowing over tha weir we dan at Fitirmount．The formula used fors
 will here：in the W^{\prime} ．D）．Reperts for 18T－page 10：3，in which
 mular．

Mr．Ny－trom saly，that he putpose？mate the formula to nuder－entiante the qumtity of watter，s asis to be on the sate side for water－pur ar Faim ont．Mr．Anith asomes the average yearly rinfill to be only 40 incle－in the schuylhill IBatin，
whilst the data of rainfall show an average of over $46 \frac{1}{2}$ inches in Philadelphia and Reading. Mr. Smith also assumes the area of the Sehuylkill Basin to be only 1800 square miles, whilst Mr. Berkinbine, who has surveyed that basin, says it is 1942 square miles.

Mr. Smith estimates the average annual quantity of water passing through the Schuylkill at Fairmount, at $563,000,000,000$ gallons, which will be a daily average of $1,550,000,000$ gallons. From Nystrom's calculation, we obtain $1,905,000,000$ gallons, which is 23 per cent. more than given by Mr. Smith.

Although the weir measurement of water is not very correct, it is evidently more correct than to guess at the pereentage of rainfall available at Fairmount.

COST OF FATRMOUNT WATER-WORKS AND DAM.

> 810."What are the liabilities of the City, and to what extent in actunl outlay, for the construction and maintenaner of the lanirmoment Dam, as also the Miggieggate. cost of plant at Frrirmomit?"

The buikling of the Fairmome Dam was commeneed in the year 1817, by Me-srs. Josiah White and Joseph (xillingham, and was finished in the year 1821, be Ariel Conly. The Dam has sinee been twiee rebuilt, namely, in 1843 and 1872.

(OST OF BUHLDING FATRMOUNT D.LA.

1818 To Me:sr: White and Gillingham, for buildding da:m, the City pairl
$\$ 150,000$
1821 To Captain Ariel Cooly, for building and com-
pleting the dam,
$182 t$ To the Sohnylkill Navigation Company, for the use (apiparently) of the whole water-power at Fairmount,

26,000
1843 libr rebuitding the dam, $\quad 56,000$
1872 For rebuilding the dam, 195,640
Expenses for repairing to date, about 50,000
Total for the dam,
627,640

COST OF FAIRMOUNT WATER-WORKS.

Mr. Brkinhine says, that the interest on the cost of works and water-power at Fairmoment, is $\$ 36,000$, which is 6 per cent. interest on $\$ 600,000$. (See W. D. Report for 1864 .) Up to that time, the cost of the dam was $\$ 382,000$, leaving $\$ 218,000$ for the cost of the works.

AGREEMENT BETWEEN TILE CITY OF PHLLADELPIIA AND THE SCHUYLKILL NAVIGATION COMPANY, DATED JUNE 3, 1819.

It is herehy mutually understood and agreed, between the said partios: That the said President, Managers and Company of the Siduylkill Navigation (Co. shall and may, at all times, draw off from the said dam as much water as they may deem necesary for the purpose of navigation, and that the said Mayer, Aherman and Citizens shall and may enjoy all the remainder of the sad river for the pmopoes hereinafter mentioned: Prorided, They do not at any time reduce the same, or keep the same redneed, below the level of the surface or tep of sidd dam," it heing the design an I meming of the parties, that the said Mayor, . Iheman and (itizens shall mery have suleh nee of the watere as, with the use thereof by the said President, M:ungers and Company, will ant reduce it below the sad surtace, or the of the dam,* or keep it sur reluecel.

And the satd dam is to be kept up, and in goon and sufficient repair, at all times and fore ree he the said Mayor, Ahlerman and Citiz ons of Philadephia, and their suceessors, at their own proper expense and charges.

Amb it is firther agreed between said parties, that a tail-race or camal, to aceommodate the navigation of said river at the said dam, is to be completed and finislod, in good order, by the Mayor, Alderman and Citizens of Philadelphia, and their snecessors, and, as soon as finisisel, delivered and secured to the said Navigation Company, and their successors forever.

[^0]And the said Mayor, Alderman and Citizens: of Pliladelphia, and their successors, shall build one good and sufficient guardlock, and two chamber-locks, each to be eighty feet long and seventeen feet wide, as required by the Act of Incorpmation of the sail Navigatioa Company, the sail low to be so de pr as to admit the water of the said river, at the lowest time of the said water, to the depth of three feet on the ribbon of the gateways of the said loek or locks, so ats to make a safe and comvenient passiuge for boite, and othor thing: which miv pase throug! them.

RELATIVE COST OF STEAM AND WATER-POWER.

811. "What is the relative cost of P'mmping the Cit!! Wrater Supply b!y Stertm, ("es mou practised,) or by W'aterPower, It Fairmount and Flat liocl; both with elma without interest on plant?"

The enst of raising $1,000,000$ gallons 100 feet high, at Fairmount, was $\$ 1.74$ liy the old breast-wheels, and averages $\$ 2.00$ by the turbines. With interest on plant, the eosit will be $\$ 11.70$ for the water-wheels, and about $\$ 14$ for the turbines.

The cost of raising water by steam, depends mueh upon the construction of the engines and boilers, and particularly upon the grade of expansion of the steam. The cost varies between $\$ 6$ and $\$ 21$ per $1,000,000$ gallons raised 100 feet high, for rimning expenses.

With interest on plant, the cost of steam-power varies between $\$ 15$ and $\$ 30$ per $1,000,000$ gallons raised 100 feet high.

In comparing the cost of steam-power and water-power for pumping, it will not be correct to base the calculation on ruming expenses and on interest on plant alone, because a steam engine does not last as long as a water-wheel.

The l'airmount breast-wheels lasted from 1822 to 1862, or 40 year:. In this time, many stam engines have broken down, were condemued, and new ones sulbstituted ; and there are now several stean engines standing idle, either unfit for use or too expensive to rum.

In view of all these considerations, your Commission thinks that steam-power costs 10 times as much as water-power.

(OS゙ト OF STLDAM ANI) W.ATER-POWER; BY CHIRF

"11" 11 :":

 by addinge the interest on platat in ome "-n', and emsideringe only the ramming "יp en-e in the other. If all the expernee of the

 will ber $\$ 10(5,860$, at 6 pere eemt. : and, if added to the rmming experse of the water-power, it will apper very expensive puruping.

If the interest on omly the eost of the steam amerime is added to its rmming expeust, the atem-power may appar cheaper than water-power. If all the expenses of all the steam works be adiled from the time of the fir-t -twom prmp the the same year, 1856, and the interest added to the steam rmming expenser, it will pobably revore the erse arain. Water-power is evidently the cheapest ; and whilst the plant at F'airmomet is already made, the addition of a few more wheche or turbines wonld rost less than an alditional steam engine for the same pumping.

Mr. (. H. Gallagher, Chiof Finginerer of the Wilmington Witer-Works, rexommends water-power as being much cheaper thatı -te:am-power.

The Water Department hats leen partianlarly unfortmate this year, (187s.) in breaking down of steam pmoming michinery.
 Point) Iroke down in Jonly, afier a short ran, and is yet (Nov. 13) muler repair.

The new $20,000,0$) (0) gallon engine, at the sicherlkill Works, met with the sam finte, and is yet standing in the condition it was when it booke.

Only two of the four engines at the Sehuylkill Works are in rumning order (Nov. 13, 1878).

Only one of the two engines at Roxborough is running. The Cornish engine there ran only 467 hours in 1865, and 726 hours in 1867 ; since which time it has pumped very little water.

One engine at the Delaware Works stopped running Nov. 13, and is under repair.

At the sume time, several boilers at the Belmont Works are being sealed and eleaned; so that only one of its three engines is rumning, and supplies the east side of the river; whilst no water is pumped into the George's Hill basin.

The water in the reservoirs supplied by steam-power are all very low, and the Chief Enginear says: "The supply will be short," and he recommends ceonomy in the use of water.

These inconveniences establish the fact that water-power is not only the cheapest, but also the most reliable for supplying the City with an abondanee of water.

In calculating the expense of steam pumping, the interest on plant of all the steam works, whether ruming or not, slould be included for a fair comparison with the expense of water-power.

ADDENDUM TO § 2 , PAGE 23.

On page 21 , W. D. Report for 1876 , is given a statement under the head "Flow of the S luylkill and R infall," which s:yys the daily average flow for 45 days, was only $2.30,788,888$ gallons, including the water used by the Canal. Th? average daily pumpare in the same time, was abont $16,000,000$ gatlons. It requires at least 2.) gallons to pump one into the reservoir, which wonld make the average daty flow of the Schuylkill at least $400,000,000$ gallons, without the leakage, and that consumed by the Camal.

B.AD WATER IN KENSINGTON.

 "lull imjurions to lecelth. Calluot the S'lluylkill supply Rensiugton allel Franlijoral firoulle torinthian basin,
 wrore?"

The daily eapacity of all the steam engrines on the Sehuylkill, is as follows :

ks.	Eurgines.	Gallons.
Shmylkill,	Old Cornish	5,287,680
	ide Iever,	7,598,880
	('om, II. G. .	0,132,116
	Comp'nl, Cramp	$20,000,000$
Balmont-Three Worthingtons,		19,749,726
Roxbormeh-Two Emernes,		6,86:3,673
Fairmonnut- Wrarthin¢ton,		2,:361,2 19
		71,9!96

'Thi- "alputy i- mone than the movimum prompare of all the work : but it is maly the schurlkill W iter- Wrorks which pump direetl intotheselmylkill amd (orinthian h-in-, from which
 fon with water.
'The elpucte of the shandkill Wrork- alome, in $48,018,976$

 for Kem-ington, whish is ower threr time the maximmen daty pemprage of the Delaware Whark-

The present main comereting the Corinthian and Delaware basine is only : 30 inches in diameter, amd the head of fall only 6 feet, in al distane of nearly there miles between these basins,
 if a moin of -uitable size were laid, the requisite amount of water could be delivered bye it.

INDIFFERENCE OF THE (OMNISSION OF ENGINEERS, 1875.
 of E'ngincer's of 1 sjo sleould declime to conssider my

 without un! rextru cost to the City!" "

Your Commission doms not underst:md whe surla amportant propasition was rejected by the Water Supply Commis.on of 1875 ; particularly, as it bore dirently upon the anloget thense engineers were invited to investigate.

PUMPS AT F゙AIRMOUNT RUNNING WTTHOUT PUMPING.

815. "The pump.s of the whepls Nos. I rad II herl been I'mnimg for yfers without pumping "n!g w'rter: whirh, when told the Commission of 1875 , they essled, ' how
 by rbssencere of "gitation on the surfirer of the basin. Is mot thert relwoyss occesioned by inflowing rurzents?"

The influx from the pumps to the reservoir must be exceedingly weak, or amount to nothing, if no disturbance is observable on the surface of the water over the inlet. The influx from the stand-pipe creates muel disturbance on the water-surface; aud the same omght to be the case with that from the pumps mentioned.

One member of your Commission salys, that he observed the leakage of the pump-piston of wheel II, some twelve years ago, by phacing his car cloce to the pump, the passage of water throngh the paeking could thus be distinetly heard.

M()DE゙ (OF MEASURIN(THE LEAKA(iE OF TIE PUMPS.

 nexir merfesureverut:
 is a very gond ons, and is, evidently, better and mone corvert th:an weir me-F-merment.

Four methem combld be readily applied to thoce pumpes from which the where is dischared ne:re the surface of the basins, as is thereace beth at the Firimoment and Corinthian misens.

One member of four Commission happenem to be present at the Grinthian hamin when the weir experiments were made by the Commi-siont, (1875,) and hi- comvietion wat that the resmlt would give a very unertain approximation to the truth, beeanse the engineers were not provided with the neeresaty mems fior attaining aworacy.

The colmue of water flowing aver the weir wat calculated by
 heend, hout when the head varies irrernlarly, as was the cate at the Corinthim basin, a preatution must be taken for obtaining :urentacy, which wat omitted by the Commission, namely, to take the average of ha hand mot h menle, ats they did.

The Commission ought to have adopted the method proposed ly you fire meanring the leakage of the pomps.

THE COMMISSION COULD NOT MEASURE THE WATER.

\& 17. In their Report, the Commission declare their inchility to measure the water. "Can not the water be measured as I proposed?"

The declaration quoted is probably derived from a statement on page 23 , as follows: "It was impossible to measure the actual quantity used by the wheels, on account of the tide and low archways of the tail-race, without a very considerable expenditure ; but, from a consideration of their openings, the observations we could make, and the best data oltainable, we are satisfied that the wheels do not exceed the duty of 60 per cent."
'The volume of water pumped into the reservoir can be measured by the method you proposed, but not the volume used by the wheels.

- Your Commission is surprised to learn that engineers of so high standing, should declare it impossible to measure the actual quantity of water used by the wheels; which is indeed a very simple engineering problem, that can be solverl with much greater precision than by weir experiments, and at an insignificant expensc.

THE FAIRMOUNT DAM DRAWN DOWN AND NAVIGATION STOPPED.

8 18. "Are there any engineering reasons to justify veducing the level of the Freirmount Dam B6 inches below its breast, in lis69, whereby the Vavigation amd the Water-Works were both arrested? Cure a statement of the minimum performance of the pumps at tluat time be sumplied?"

The total rainfall in Philadelphia for the four months, June, July, August and September, 1869, was only 11.86 inches, whieh
is the simallest rainfall, in the same monthe, since the dry year, 1819, exepting the year 1854, when the fall was only 10.054.

From the tables of rainfall, parese 16 and 17 , it will be seen that it rained lews in Reading than in Phitadelphiat, during the two months of July and Augro-t, 1869, mamely :

1869. Ihiludel, hiu.	Reculing.	
July,	2.885	2.20
Augnst,	1.280	1.02
Total,	4.165 in.	$3.22 \mathrm{in}$.

The rainfall at Reading may be considered the average in the Selmylkill water-shed, and it was smallest about the time the navigation was stopped.

It appears, also, that, at the date mentioned, the dam was unneversarily drawn down by rmming the wheels at high tide, and stopping them at low tide. If the dam had been kept finll, and the whech rum only at low tide, much more water could have been prumped, withont stopping the navigation, provided the diameter of the wheels and pumps are of such proportion, as to utilize the beet effect at low tide. [This sulject of propor proportion of the wheels and pumps, is treated in another chapter.]

The total rainfall during the year 1869, was 48.81 inches, which is up to, and rather above the average for the last 50 years. In the month of October, the same year, a heavy freshet raised the dam at F'iirmomet, 11 feet 5 inches above the comb.

Four Commission hats no means of finding out the minimum performance of the pmons at Faimount during the drought in 1869, exept by the Water Department Report, which gives the average daily pmompage $16,447,743$ gallons, in the month of Angust, which is the minimum for that year. This Report does mot say that the pumps were arrested ; but if the level of the dam was drawn down three feet below the comb, it was probably below the top of the suction pipe, and the pumps, consequently, pumped air instead of water.

The greatest difference of raintall ar Philadesphia and Reading, up to this time, is, perhaps, this summer, 1878, mamely:

1878.	Philardeppliar.	Trecrling.
June,	4.750	2.73
July,	¢., 313	1.63
Augusit,	4.8:3:3	1.81
'Total,	14.896 in.	6.20 in.

This acrome for the seareity of water at lammont this smmmer, althongh there wats phenty of rain in Philalelphia, but the dani has, nevertheless, been kept eonstantly full, to within a few inches of the top of the flash-bourd, by stopping some wheels during high tide; the probable result of your efforts in behalf of the interest of the Water Department.

Your plan of economizing the water-power at F'airmount, namely, to run all the wheds at low tide, and stop them during high tide, hat not been filly earried out, as the wheels No.. 3 and 4 have been rumning ahonst constantly during high tide. Much power has also been wasted by allowing the water to run free'y through the turbines Nos. 8 and 9 , whilst standing still.

On August 27, 1878 , at 10 h .15 m. A.M., your Commission Was standing on the abotment at Farmonnt Dam, and comed the number of wheels ruming, by uoticing the strong eurrent of water issuing from them, and your Commission thonght that the wheek Nos. $3,4,8$ and 9 were rmming : but, upon entering the new wheel-house, the wheels 8 and 9 were fonnd standing still. Your Commission, satisfied that those wheels reuld not possihly have been stopped in so short a time, observed the current from the doorway between the wheels, and fomnd it to be noarly as strong as when the turbincs were rmming. This is a careless waste of water-power.

Your Commission can see 110 enginecring reason for drawing down the dam in the manner statel, but conclusive reason for kecping it filled to the eomb.
810. "On the fith of September, 187(i, both the Spring
Gumlen and Coriuthien reservoirs weve down fifet,
whilst only one of the cmgines at the Srhmyllill Steam
Worfis wers in operation. Is it mot an extrologgant
waste of power to stopl the whecls at low tirle, the
time when the power is greatest, atul preticularly
when the wreter is low in the reservoirs?"

To mon the wheels at high tide, and stop them at low tide, is certainly a waste of power. There are, however, circumstances involved in all kinds of operations, which are not generally apparent to transicht observers, one of which may be mentioned in rerard to the Fairmomit Water-Works.

In his address to the Franklin Institute, Mr. Berkinbine said, "that the prmp)s are run to full working speed when the tide is in, and, on account of defective arrangements of parts, the piston speed camot be increa-ed."

The machinery at Fairmome is, evidently, wrongly proportioned for the dhey it is to perform.

The principal advantage of turbines over breast-wheels, at Faimoment, should be that the turlines utilize the whole head at different heights of tide, whieh the lreast-wheels camnot do ; but, under the actual cireumstances, the turbines are worse than the brenst-whech. When the tile is low, the circular gate is let down, to prevent the wheels from rumning too fast, and thus the discharere is choked, so as to impair the full action of the water on the wheel.

REMARKS.

Excrupple - I'heal No. I wess stopped dering the year 1875 for (i17) hours, ar weer 27i) days! Whed No.II weas stopped the scmue your s195 hours, or orer :3 41 deyss!

Sü other wheds mentioned were stopped, collectively, 8680 hours,
 for the stoppr!! ! bring, that the reservoirs were full.-(filled ins stetem-power, of com'se.)
J. H.

STOPPING THE WHEELS AT LOW TIDE.

820. "I have visited Fairmount, the Corinthich and other Reservoirs, with the following results."

In the Year 1870.
Sept. 3, Corinthian Avenue basin down 10 feet; 3 wheels stopped at low tide.
" 7, Fairmount basin down 6 feet; 3 wheels munning at low tide.

8 ,	"	"	"	6		4	"		at high tide.
" 9,	"	"	"	6	"	5	"		
" 10 ,	"	"	.	7	"	5	"		"
" 11,	"	"	"	7	"	5	"		
" 12,	"	"	"	7	"	6	"		"
" 13,	"	"	"	7	"	2		stoppe	at low tide.
" 15 ,	*	"	"	7	"	5	"	runni	g at high tide.
" 18 ,	"	.	"	7	"	3	"	stoppe	ct low tide.
" 21,	.	*	"	7	"	2	"		"
" 22 ,	.	"	.	7	"	6		rumi	g at high tide.
" 24 ,	"	.	.:	7	"	6	"	"	
" 27,		.	"	7	"	6	"	"	"
- 28 ,	"	.	.	7	"	6	*	"	.

I, also, further visited said basins and water-works in the year 1871, with the result as stated in the following Table:
Aug. 6, 3 wheels stopped at low tide, the rest ruming at half speert.
" 19,2
" 22, 6 " running at high tide.

Sept. 4,6	" " "
"	5,5

It must be remembered that the water in the river was very low all this time, not running over the dam, thus showing that the wheels were running at high tide when the water had the least power, and stopping at low tide, when, if the pumps were in good condition, they had three times the power, but in proportion as they were out of condition, the power would decline.

Continumtion of the above stutements for the Years 1875 and 1876 :

Thry ulways had pumping capacity enough to keep the basins full, if the pumping machinery at Farmount u'as in even a moderate condition, or if they had pamped one-half of their full capacity.

Below is given the height of the water in the basins at the respectice dutes:

1875, June 24, Corinthian busin down 10 feet.

.	July 11			12		
		Kensington		7	"	
"	. 1 lg .18	"		7	"	
"	20	Corinthian		10		inches
	Sept. 17	"		6	8	
		Kensington		6	"	
.	Oet. 19	Corinthian		12	"	
1siti,	Mar: 1			5		"
"	April 10			6	6	
"	11	Kinsington		9		
	11, one-half of the pumps stopped.					
"	12, Corinthian basin down 7 feet.					
	2			5	6 in	nches

> 1876, May 4, Corinthian basin down 5 feet. 1877, Sept. 2, 4 wheels stopped at low tide. "" 22,3 " " " "

The above statements go to show that they could not have stopped the pumps while the muddy water passed down, as might have readily been done if the basins had been kept full, so as to contain a few days' supply.

Year 1878. No. of wheels stopped. Corinthian Basin down.

Your Commission has already commented upon the error of running the wheels at high tide, and stopping them at low tide.

MUIDI D DRINKING WATER.

\& 21 "If the reseronirs shomld be liept finll, atmel the wheels stoppred when ther river is mullly, rould not the City be gelurerall!! sulpliad with rlene welep:".

The caparity of all the reservoirs (exept the East Park) is 191, Tis, 0 (0) galloms, and, if the eity require $50,000,(000$ registered gillons per dey, which is, perhaps, mot mome than $36,000,000$ artual gallons, the requirt mumber of days will be $191,778,000: 36,000,000=5.3$ days, in which time the muddy water might pass. 'This, however, implies that all the water shonkl be drawn ont from the batins, which is not ardvisable, but :3 der might be alluwe! for stopping the pumps. With the aid of the East Park reservoir of $750,000,000$ gallons, added to the othee remeroire, there would be $941,788,000$ gallons; which conld supply the city with water for 10 days, without pmomping.

TURBINES AND PUMPS-PROPER PROPORTION OF DHAMETERS.

ther wheels amel howl of fiell:"•

This simple question, which the Commission answers in the negative, involses an important problem in hydranlics ; namely, to prove mathematieally: First. What is the proper velocity of the water-wherel, or turbine, for utilizing the greatest effeet of a given heal of fall? Secondly. What sized pumps will make the moter rim with the most eflewtual velocity" In order to utilize the greate-t pon-ible efliet of a waterfall, the velocity of the cirele of perension of the turline, or water-whel, minst bear a definite proportion to the velocity due to the head of fall.
$H=$ head of fall in feet.
$V^{\prime}=$ veloeity, in feet, per second, due to the head of fall.
$v=$ veloeity of the cirele of percussion in the turbine.
$D=$ diameter of the circle of percussion, in feet ; this diameter will afterward be converted into the diameter of the turbine.
$n=$ revolutions per minute of the turbine.
$F=$ motive force in the circle of percussion.
$P=$ power of the turbine in the eircle of percussion.
The force acting on a borly moving in water, or water moving against a body, is as the square of the relocity of motion. In the ease of the water striking the buckets of a turbine-wheel, the relocity of impact is equal to the difference between the velocity T and velocity v, or $\Gamma^{-}-r$, and, consequently,

$$
\text { Force, } \quad r^{\prime}=(I-v)^{2} \text {, }
$$

Power is the proluct of force and velocity, or

$$
\begin{equation*}
\text { Power, } \quad P=F v \tag{2}
\end{equation*}
$$

Insert for F, its value, formula 1.

$$
\begin{array}{ll}
\text { Power, } & P=v(V-v)^{2}, \tag{3}\\
\text { Power, } & P=v\left(V^{2}-2 V^{2} v+v^{2}\right)
\end{array}
$$

Power,

$$
\begin{equation*}
P=V^{3} v-2 V v^{2}+v^{3}, \tag{4}
\end{equation*}
$$

MAXIMUM AND MINIMUM POWER OF TURBINES.

| 1st. Suppose the turbine to be allowed to spin around as fast as the water can drive it, without doing any work, the water will then flow freely through the wheel without any power being realized from it, and is, therefore, a minimum.

2d. Suppose the work of resistance to be so great, that the water cannot overcome it, but the turbine stands still, and the water run through it without any power heing realized, we have another minimum of the wheel.
7 In both these cases the power of the waterfall is lost; but when the turbine runs with a moderate velocity, and overcomes resistance, power is realized, and there is evidently some action between the first and seend case which is a maximmm. The power of the turbine, finmula 3 , depends mainly upon the velweities $\mathrm{I}^{\text {rand }} v$.

The problem before us is to find the proportion of V and v, when the power P is a maximum ; that is, when ' $P: \dot{d} v=0$. Differentiate the formula 2 , and we have

$$
\begin{aligned}
& i P=V^{2} i v-4 V^{v} r i v+3 v^{2} i v, \\
& i P=i v\left(V^{2}-4 V v+3 v^{2}\right) . \\
& \frac{i P}{i v}=V^{2}-4 V v+3 v^{2}=0 \\
& 3 v^{2}-4 V v=-V^{3} \\
& r^{2}-\frac{4}{3} V=-\frac{V^{2}}{3} \\
& r^{2}-\frac{4}{3} V v+\frac{4}{9} V^{2}=\frac{4}{9} V^{2}-\frac{V^{2}}{3} \\
& v-\frac{2}{3} V=\sqrt{\frac{4}{9} V^{2}-V^{2}}=-\frac{V}{3}=
\end{aligned}
$$

$$
\begin{equation*}
\text { Velocity, } \quad v=\frac{2}{3} V-\frac{V}{3}=\frac{V}{3} \tag{5}
\end{equation*}
$$

That is to say, the velocity of the eirele of pereussion, in the turbine, should be only one-third of the velocity due to the head of fall H.

$$
\begin{aligned}
& \text { Velocity of cirele, pere. } \quad v=\frac{\pi D n}{60}, \\
& \text { Velocity due to fall, } \quad V=8 \mathrm{~V} / H, \\
& \frac{\pi D n}{60}=\frac{8}{-3} / H \\
& \qquad n=\frac{60 \times 8}{3 \times 3.1416} \mathrm{~V} / H=50.9296 \sqrt{ } / H,
\end{aligned}
$$

This formula must be corrected for the angle of the guiding buckets, about 15° to the wheel.

$$
\frac{50.9296}{\operatorname{Cos.}^{2} 15^{\circ}}=54.58
$$

The width of the buckets in turbine-wheels, is generally made onc-sixth of the diameter, and, if we call $D=$ diameter, in feet, of the wheel, measured over the outside of the buckets, the coefficient will be

$$
54.58 \times 1 \frac{1}{5}=65.5
$$

This coefficient, inserted in formula 8 , should give the proper proportion of the revolutions of the turbine to the head of fall, or

$$
\begin{equation*}
D n=65.5 V I I, \tag{9}
\end{equation*}
$$

This, however, implies that the turbine works only with impact, and without reaction, which is rarely the case ; but the area of discharge in the wheel is made smaller than that in the guides. The turbine will then work with both impact and reaction, and
the proper revolutions for utilizing the maximum duty will be higher, dependiug upou the proportion of these areas of discharge.

In the construrtion of the turbines at Fairmount, Mr. Geyelin has been consintel about these areas, but he conld not give the required information, and your Commission is, therefore, mable to determine with precision the proper revolutions in proportion to the head of fall.

In carefilly constru ted turlines the proportions of these areas saries between 3 to t, and 8 to 9 . Assme the proportion to be as 35 to 4.5 , in the wheels at Farmomet, the coeffieient in formula 9 will then be increased 19 per eent, or $65.5 \times 1.19=$ 77.945 , say 78 . Then we have the proportions

$$
\begin{align*}
& \qquad n=781^{\prime} H, \tag{10}\\
& \text { Revolutions, } \quad n=\frac{78}{1} v^{\prime} H, \\
& \text { Diauncter, } \quad D=\frac{78}{n} 1^{\prime} 1 H, \tag{12}\\
& \text { Head of fall, } \quad H=\left(\frac{D u}{78}\right)^{2},
\end{align*}
$$

These formulas are expected to give a close approximation to the proper proportions of the diameter and revolution of turbines to the head of fall, for utilizing the maximum duty of the waterfall.

Ohservations were made, September 17, 1878, on the turbines No.. 3 and 4 , making $N=24$ revolutions under a fall $I=14$ feet. The diameter of the wheels are $D=10.25$ fect. Required the proper revolutions.

Formula 11, revolutions, $n=\frac{78}{10.25},^{\prime} 14=28.4$ per minute.

This is about four revolutions more than actually made ; but the eireular gate was partly down, so that the wheel did not run with the full head of pressure. With the gate wide open, the revolntions would probably have far exceeded 28 per minute, which indicates that the pumps are too small for these turbines.

The turbines in the new wheel-honse, Nos. 7, 8 and 9 , are 9 feet in diameter, and made 38 revolutions per minute, under a fall of 14 feet, with the circular gate partly closed. Required the proper revolutions per minute.

Formula 11, revolutions, $n=\frac{78}{9} \sqrt{ } / 14=32.4$ per minute,
This is 6 revolutions less than actually made by the turbine with the gate partly elosed, and your Commission is, therefore, convineed that the pumps are too small. This is probably one of the reasons why the present turbines at Fairmount do not pump more water than the old breast-wheels.

PERCENTAGE OF POWER LOST BY RUNNING TURBINES AT IMPIROPER SI'EEDS.

$n=$ proper revolution of the turbine, calculated from formula 10 ; that is, for the maximum effeet.
$N>$ or $<n$, or any number of revolutions of the turbine greater or less than n.
$\varphi=$ the fraction of the maximum effeet available with N revolutions per minute.
$\%=$ pereentage of power lost by improper speed of the turbine.

$$
\begin{align*}
\varphi & =\frac{N}{4 n^{3}}(3 n-N)^{2}, \tag{13}\\
\% & =100(1-\varphi),
\end{align*}
$$

Applying these formulas to the turbine No. 7, at Fairmount, we have given $n=32.4$ revolutions, and suppose it to make $N=$ (io revolutions when the ciremlar gate is wide open, and the head of fall is, say, 14 feet.

$$
\varphi=\frac{601}{4 \times 32.4^{3}}(3 \times 32.4-60)^{2}=0.62
$$

$$
\text { Losis of power, } \quad \%=100(1-0.62)=38 \text { per cent. }
$$

This loss of power is not the percentage of the natural effect of the waterfall, hat of the duty the turbine would make with the proper revolutions, sily 60 per cent. Then, $60 \times 0.62=$ 37.2 per 'ent., the actual duty of the turbine under the assumed conditions.

Your Commision inclines to believe that the turbines at Fairmomet do mot exered this duty.

When the cirembar gate is elosed downen to reduce the revolutions: to 3x, as is actually made, the lose of duty will be much greater than when rim with full water.

The propertion of the turbine and pomps should be made right at first, fire otherwise the power will be wasted ly operating the cirenl:ar gatce.

Vonr Commionion is of oppinion that the pmunts at the Fairmomut Watter-Wrorks are much tex small. The branch pipen leating from the pumps to the main are rather small, and the sudton lap-ralve ought to be made circular, like the delisery-valse.

The bande-pipe leading from each pmonp should be of the same diameter at that of the main; becanse when the two pomps are commeded at right angles to one driving shaft, the velocity of one prump is greatest when the other stands still.

§ 23. DUPLEX ADJUSTABLE TURBINE.

Philatelphier, September 15, 15\%S.

Deur Sir: -
I:nclosert is rell ritirle firom the " furmiver," emt-

 Adjustuble T'urbills.

Wiall youllere the goorlurss to cerll the rettention of gom1

> I "mm, Youns Iiespuertfinll!,

Jollu II. Nystrom, Esig.
JAMES HAWORTH.
[The Philadelphia Inquirer, Wednesduy September 18, 1878.]

MORE W ATER.

Lmproving the Fairmount Works.
A meeting of the sub)-committee of the Committee on Finance and Water, of City Councils, was held yesterday afternoon.

The Chief presented and read the contract entered into with Mr. Emil Geyelin for eertain improvements at the Fairmount Water-Worls. It is as follows :

I hereloy propose to construct and deliver at the Fairmount Water-Works, and erect an additional superstructure for wheel No. 5, as shown in plan, whereby the new work will be entirely disconnected from the wall of the building, and will sustan the gearing witlout vibration ; also a movable and a gnide wheel of the duplex pattern, of 10 feet diameter ; also a short cylinder, to serve as a seat in the 10 feet dimmeter cylinder.

The where is to be provided with a hood and gate, whirh gate shall be fitted with atutomatic motion, secured purtly in the upper part of the existing inlet (llamber, so as to assist in the opening and closing of the said gate loy the fall and rise of the
tide. First. The ability to rmu the turbine so as to give twelve strokes to the pumps per mimute when the tide is out, whereas now they run so as to give the pmups but eight strokes per minute. Second. 'That by means of the antonatie gates acting upm the inner division of the duplex wheel, one-thied of the issine of diecharge will be retained. Whenever the tide is out, a consequent saving of water will result therefrom, which will become available for pumping pmoneses.

What I would, therefore, herely guamance, as the advantage to be desired lye the City of Philadelphia, is an inereased capreity for pumping at the Fairmomit Works over the greatest amomit pmoped at present, equal to ome and oue-half million gallons per day, with the machine at full work, showing no vibrations. The cost of the alterations will be four thousand dollats, and the cost of the ereetion will be three hundred and sixty dollars. The emitracter is to be paid one-fonrth of the amome "1pon the delivery of the material, and one-half the total amomut additional nome the starting of the wheels, and the remainder upen the satisfactory performane of the mathine, in aceorelane with the grabanteres, after being tosted by the Chief Engineer, whe is to be the sole julge, lwoth ats regards quality of the improvements and the performance of the machine.

The failure of the Chief to disuppore of any part of the marhine prior to the test, is not to be emsidered as an atereptance of the same. 'The Chiet Engineer is to he the sole judge in all (alses of dispute. If after the test it is fermed that the gramanteed improvements have not been made, the eontractor mist place the marhinery in its present condition, to the satisfaction of the Chief Engineer, and refund the money advanced.

On motion of Cemeral Wiagner, the Committer decided that the alteration was a proper one to be made.

REMARKS UPON THE FOREGOLNG.

The Duplex Adjustable Turbine, invented and patented by Mr. Emil Geyelin, consists of two concentric wheels on one slaft, with separate guiding buckets to each wheel ; so arranged with circular gates, that water is admitted to cither one or both the wheels, for accommodating variable motive power, and power of resistance.

By this arrangement, three different powers can be transmitted by the turbine for cach constant head of fall. For different heads, the power may be equalized or variel ad libitum, within certain limits.

The circular gates regulate the admittance of water to the gnides, and are proposed to be operated automatically by rise and fall of the tide-water.

This duplex turbine will, no donbt, be very grood for cases where the power of resistance is variable. It Fairmoment the power of resistance is constant, or nearly so, for which this duplex turbine is of little utility, as tar as regards ecomomy of the water-power.

It is explained that the duplex turbine is suitable for variable head of fall, namely: for a ligh fall, or when the tide is ont, only the inner wheel is used for motive power; for an average head of fall, that is, at mean-tide, the outer wheel is used ; and for the minimum fall, that is, when the tide is in, both the wheels are used for motive power.

This will, no doubt, work well for maintaining a nearly uniform velocity of the wheel and pumps, withont regard to ceonomy of the water-power.

The second advantage elaimed for the Duplex Adjustable Turbine is, "that by means of the automatic gates acting on the inner division of the duplex wheel, one-third of the issue of discharge will be retained. Whenever the tide is out, a consequent saving of water will result therefrom, which will become available for pumping purposes," when the tide is in, of course.

The philosophy of this, is as follows: To save the water at low tide, when it has the greatest power, so as to be able to spend
more of it at high tide, when its power is smallest. This is the saving doctrine which has been in operation at Fairmount since the year 1860, of which you have been eomplaining for the last nine years.

It has heen explained (formula 10, page 50) that in order to utilize the greatest percentage of a water-power, the turbines must run with a eertain velucity, proportionate to the height of fall.

If the duplex turbine is so constructed as to utilize the best effect with fill water on both wheels at high tide, then it will waste water when ruming at low tide, the time when the power onght to be best utilized. A turbine so construeted will be a repetition of the bhmders of 1860 and 1870 .

The Duplex Adjustahle Turbine, with automatic motion of the eircular gates, will answer very well at Fairmomt when there is plenty of water in the river ; but will not answer for (eonomizing the water-power in the dry season.

The operation of gates for regulating the motion of turbines, is generatly accompanied with a lows of power, and conspicunusly so in the present ease.

Your Commission believes that the best arrangement for utilizing the maximum power in the dry season, is to construct the turbines and pumps so as to rum with its greatest effect at the time of mean low tide; that is, for a fall of 14 feet, with the gates wide open.

At Flat Rock dam, where the head of fall is nearly constant, there will be no trouble of eonstructing turbines for the maximmu effert ; and no need of the Duplex Adjustable 'Turbine.

§24. WATER-PRESSURE ENGINES.

Your Commission, however, believes that water-pressure engines would be much better at Flat Roek than turbines.

Water-pressure engines cost much less than turbines, are less liable to get out of order, simpler in construetion, take up less room, lese expensive to run, and utilize a mueh higher pereentagre of the natural effect of the waterfall.

§ 25. MINIMUM FALL ON TURBINES.

Philadelphia, October 1, 1878.
Mr. Johu W. Nystrout:
Decer Sir:-
I have read with interest that part of the lieport of the Wher Commission which treats of the proper velocity of tubines, rud the cuiticisul on Geycliu's Duplex Turbiue; in which it apperas that turbines for Fairmount Wreter-Worlis should be roustrueted for mean low tide, or 14 fect fall. How will a turbine so coustrueted rulu rithigh tide? Aud what head of fall will just balance the pumping resistumee, so that the turbine-wheel will not turn whilst the water rums?

Respectfully Yours,

JAMES IIAWOITTII.

In answer to your letter of October 1, your Commission submits the following explanation :
$I I=$ head of fall for which the turbine is construeted.
$V=$ velocity due to the head $I I$.
$h=$ head of fall at high tide, or when the turbine stops, or cannot run.
$V^{\prime}=$ velocity due to the head h.
$v=$ proper velocity of the circle of percussion of the turbine, produced by the fall I.
$v^{\prime}=$ velocity of the circle of percussion, produced by the head of fall h.
$F^{\prime}=$ motive force acting in the eirele of percussion to turn the turbine.
'The weight of the colnmu of water elevated into the reservoir, is practically the same for different speeds of the turbine, for the small difference of head, caused by variable velocity, can, without detriment, be omitted in this particular case. The force F must balance this head of water.

From formula $1, \$ 22$ we have :

$$
F^{\prime}-(V-v)^{2}=\left(V^{\prime \prime}-v^{\prime}\right)^{2}, \quad \text { or, } \quad V^{\prime}-v=V^{\prime}-v^{\prime}
$$

Formula 5 , same paragraph, gives:

$$
\begin{aligned}
& V^{\prime}=3 v, \text { ur, } v=\frac{V^{\prime}}{3}, \text { then, } V^{\top}-v=V^{\gamma}-V^{\top}=\frac{9}{3} V^{\gamma} \\
& \frac{2}{8} V^{r}-V^{r \prime}-r^{\prime}, \quad \text { and } \quad v^{\prime}=V^{\prime \prime}-\frac{2}{3} V^{\gamma} . \\
& V^{\prime} \text { elocity, } \quad V^{\prime}=s_{1} H, \quad \text { and } \quad V^{\prime}=8_{1} / h . \\
& \text { Velocity of 'Turhine, } \quad v^{\prime}=8\left(v^{\prime} h-\frac{2}{3} l^{\prime} I I .\right)
\end{aligned}
$$

The formula 2 will answer your first question: "How will the turbines run at high tide?"

$$
\text { For high tide, the head of fall is, } \quad h=9 \text { feet. }
$$

$$
\text { For mean low tide, } \quad . \quad . \quad H=14
$$

Velocity, $\quad v^{\prime}=8\left(\boldsymbol{1} 9-\frac{2}{3} 14\right)=4.376$ feet per second.

$$
r^{\prime}-\frac{\pi 1) n}{60} . \quad n=\frac{60 v^{\prime}}{\pi 1)}
$$

The diameter of the eircle of pereussion in the turbines Nos. 7,8 and 9 , is $D=7.5$ feet.

Revolutions of turbine, $\quad n=\frac{60 \times 4.376}{3.14 \times 7.5}=11.15$ per min.

The second question will also be answered by formula 2 ，in which $v^{\prime}=0$ ．

$$
\begin{aligned}
& 8 \checkmark / h=\frac{2}{3} \times 8_{\bigvee} / H . \\
& 24_{\bigvee} / h=16_{\bigvee} / H . \\
& 3 \checkmark / h=2_{\bigvee} / H . \\
& 9 h=4 H .
\end{aligned}
$$

Head of fall，$\quad h=\frac{4}{9} H$ ．
＂

$$
h=\frac{4}{9} \times 14=6.22 \text { feet. }
$$

That is to say，when the dam is drawn down so as to make the head of fall only 6.22 feet，the turbine will stop and the water run through it．

When the turbine is constructed to run with its greatest effeet at high tide，or head of fall，$H=9$ feet；it will stop rumning with a head $h=\frac{4}{9} \times 9=4$ feet．

§ 26．LOW WATER IN THE SCHUYLKILL，

Philarlelphia，October th， 1 ぶふ．

Mr．John W．Nystrom，
Chreirmen of Weter Commission．
Sir：－The Chief Engiucer of the W＇ater Jepurt－ ment has written a letter to Hon．Mayor Stoliley，stating that the urater is so low in the river that he call rum ouly the small turbines lulf the time，for which extraordimery saling of witer is requiral in the city．

I desire your Commission to extmine this．
Respectf゙ully，
．JAMES HAWORTH．

The water was up to the top of, and even running over the flash-board, on the 5th of ()etoher. The true difficulty about supplying sifficient water is, that two of the largest new stemmpumping engines have broken down, and are, consequently, not working. The apacity of these two engines is over $25,000,000$ gallous per 24 homs.

THE OLI) BREAST-WHEELS PREFERRED.

\& 27 - I "pmporr of the brant-ublects in place of the turbines. I wrould jut the wherls firo feet lower, and malie them stmeller thell ther old wherls, with tu'品 pumpse at right "tu!les on eechl wherl. To rum only \% hours clud stop is houls in cellh tivle. A smull wetro-motor for operating the !!utes. Would mot this be expedient?"

A hreest-wheel, like the old ones at Fairmount, transmits ahout 60 per sent. of the natural effect of the waterfall.

I well-constructed turbine tramsmits about 70 per cent, of the natural effert.

It Fairmome the turbine has the advantage over the waterwheel, that it utilizes the whole head of the fall at different heights of the tide, which the breast-wheel dues not.

However well a turline may be construeted, if not properly preportioned to the height of the waterfall, and to the power of rexistanee, it may utilize a much smaller pereentage of the natural dfiet th.un dues a breat-wheel; which is actually the case at Fairmomet, as has been heretofore explained.

The cont and repair of turbines, such as used at Fairmount, are about 30 pren cent. greater than those of breast-whechs. One great diadsumture with the breast-wheels was their interruption by iee in the winter time; and the turbines were preferred for that exprens reason.

The water-works at Fairmount were built in 1820-22, by Frederick Gratf, father of the late Chief Engineer Graff, and is yet a ma-terpicee of enginecring skill; only one of the old breast-wheels remains, the others being replaced by turbines.

The old breast-wheels had cach only one double-acting pump, of 16 inches in diameter, and $5 \pm$ inches stroke, making about 14 revolutions per minute.

Two pumps coupled at right angles to eaeh wheel, would have increased the pumpage about 41 per cent., with the same water-power.

When the water is low in the river, it is no doubt best to run the wheels about 7 hours during low tide, and stop them 5 hours during high tide.

A small water-motor, for operating the gates, would no doubt be very grod. The present gater, operated by hand, require three men, for almout half an hour, to open them.

COST OF STEAM PUMPING.

> 829. "How" much money has been expended on Sterm P'mmping "p, to this time, when water-poner could have bersl • mployed without any cost?"

The first stem engine erected on the Schuylkill, about the year 1800 , cost $\$ 6000$ per year in rumning expenses. The centresquare engine raised the amnual expenses for steam pumping to $\$ 13,807$; from which time the rumniug expenses increased, on an average, $\$ 670$ per year, until the year 1860 , when the yearly rumning ex penses were $\$ 40,550.96$. The whole amount expended up to that time, was $\$ 1,448,950$, for rumning expenses only. From the 1st of January, 1860, to the 1st of Junuary, 1878, $\$ 1,618,631.23$ has been spent in rumning the steam-power.

The 24 th Ward Steam Pumping Works, started in 1855, and abandoned in 1870, cost $\$ 360,000$.

For 14 yeary.	Yerrly Bonnimg l'xpenses	Averye Water Prumped per 24 hours.	Yearly running Expenses.	Average Water Pumped per 24 hours.
Imars.	1), 11 lr *	Ciallous.	D.illars.	iallous.
1890	(1),5.53.916	10,514,688	6,295.66	9,867,378
1861	11,712.07	10,547,099	6,207.98	10,22. 1,070
1860	50,868.29	11,9677,565	7,629.93	9,766,369
1863	57, [0:3.17	10,717,98(1)	9,07!).18	15,306,060
1861	87,818.51	!), 1336,516	11,797.86	16,35, 8,360
186.5	$91,816.01$	10,878,298	16,669.65	19,102,791
1866	82.118 .58	10,519,2(1,9	15,5+1.51	21,155, 664
1867	57,999.0.)	11, 815,59.5	17,572.52	21,951,691
1868	$67,016.99$	$11,23.5,8: 3.5$	1.), 07.2 .83	21,929,053
1869	92,017.10	1:3,15 1, ¢, 96	$16,457.56$	20,519,480
1870	9)!,(186.99	$16,160,1129$	15,775.06	$2.2,25: 2,212$
1871	RS, 50690.87	133, 13:3, 1097	$12,229.915$	$2.1,195,782$
1572	$1015,198.2 .19$	$19,655,812$	$13,579.90$	19, 292,776
187:3	10: $0,93: 3.7!$	$16,1991,15.5$	$17,543.91$	21,077,(0)9
1671	$127,268.75$	20, 606, 99	17.301 .5 .45	21,501,733
187.5	139),2.2 4.19 ?	26,6ご, (1) 7	1-5, 181.0 .5	21,01:3,721
153	1.5),59 1.6:3	21,812,21:3	17,50.5.36	2-2,s)9,066
1877	127,781.29	$2 \cdot 2,967.973$	$2(5,2: 34.90$	$26,015.985$
18 yr .	1,618,6:3 1.2:3	$271,57-5,5 \times 1$	$261,880.60$:348,35:3,211

Stean-power eost $\$ 16.30$, and water-power $\$ 2.06$ per million gallons pumped. Allowing for 55 per cent greater height pumped hy the -te:an, the propertion will he $810.50: 82.06=5.1$, that is, -tamm-perer cost 5.1 times atimelo as water-power.

The quention before ns, however, implies the cost of that math of stean pumping which eonld have been aceompli-hed with the water-power at liairmonnt ntilized to it full eapacity. It is not definitely konon how many gallons are contimed at Fairmount for pumpine one into the reservoir, but moler the
 quiterd. W"ith proper propertions of the pumpe :med wheres, 13 grallons omelit to lue -ntliceient.

The average height to which the steam-power pumps the water, is 55 per cent. greater than that at Fairmonnt. The full capaeity of the Fairmount Water-Works is $35,000,000$ gallons daily, and allowing for one turbine to be continually under repair, the maximun capacity may be set down at $30,000,000$. In the W. D. Report for 1877, it appears that in average of $30,000,000$ was pumped in October, and the average for the whole year is $26,000,000$ gallons pumped per day. If this Report is correct, a very small portion of the stean pumping could have been accomplished with the present water-power at Fairmonnt. When the dam is low, the tmrbines should run ouly at low tide, for economizing the water, when only 66 per cent. of the maximum capacity can be relied upon. From Table V III we find that the water-works are stopped about 20 per cent. of the time, and also that they are stopped during the times of plenty of water in the river, when the full water-power ought to liave been used. The reason given for the stoppage is, "For high or low water, or full reservoir." It is not stated whether the "high or low water" means in the dam or of tide-water, but, in either case, the works should not stop for high water on the dam, nor for low tidewater, which are the circumstances under which the works are most powerful.

To stop the pumping by reason of the reservoir being full, would indicate that the works are too large for the demand; but there is a main, 30 inehes diameter and 6 feet head, comecting the Corinthian and Delaware basius, through which Kensington could be supplied with purer water by the surplus power at Fairmonnt, and thus save much of the expensive steam pumping.

Table X shows the average daily pumpage, by water and steam, for each month in four years; and, it will be observed, that in the winter, when the river is full, the minimum quantity of water has heen pumped by the Fairmomnt Water-Works; whilst in the summer, when the river is lowest, the maximum quantity has been pumped.

If the works had been run with their full capacity the whole year, it would have saved a great deal of money to the eity, expended on unnceessary steam puinping.

In the last two years, 1876 and 77, the Fairmount WaterWorks have been run with some better regard for cemomy.

Your Commission cannot ascertain, with correctness, the whole amount of money uselessly wasted on steam pumping.
TABLE X.

	$1860_{\text {STEAM }}$		1865. TER STEAM		$1870 .$			
	Power.	Power.	Power.	Power.	power.	Power.	powtr.	
	Gallons.							
January	8,171,145	8,364,040	13,508,602	4,395,541	15,087,023	11,542,10	15,904, 114	3,742.282
February	7,930,578	7,290,276	17.094,818	4,425,218	17,804,775	11,573,200	21,4	14,74,240
March	8,951,307	9,126,612	18,385,808	6,233,679	15,444,033	13,232,4<3	21,316,976	6,036,54
April	10,181,655	9,991,546	20,139,024	6,015,531	23,233,504	13,216,256	23,015,24i	5,44,4,924
May	8,926,005	10,281,243	19,363,967	9,417,051	23,735,175	13,710,193	24,396,02	23,366,171
June	11,199,517	11,535,7\%	23,593,453	15,792,991	24,417,463	16,252,27s	20,650,30	0,569,551
July	12,446,775	14,718,975	20,798,3	6,000,223	26,191,619	9,817,116	14,326,8	5,542.454
August	11, 146,307	13,975,347	23,923,115	15,203,729	27,206,145	16,457,042	25,909,418	1,6-4,301
September	11,419,237	12,726,510	21,988,214	5,901,787	16,062,014	25,043,293	17,160,412	3,164,174
October	10,6i50,200	11,072,303	21,514,862 13	13,716,072	25,454,561	15,390,982	18,363,	7,329,325
November	8,724,030	9,878,690	19,683,975	10,336,413	26,088,477	13,792,512	23,742,	9,604,593
Decernber	7,731,735	7,674,955	13,907,223	12,560,732	26,306,015	8,729,186	22,925,877	14,500,803
Average	9,567,378	10,514,658	19,402,791 1	10,892,741	22,253,242	14,996,143	21,013,724	26,626,017

EX-CHIEF ENGINEER BERKINBINE; AND HIS PAPER READ BEFORE THE FRANKLIN

 INSTITUTE.8.29. "Tu " puner read before the Franlilin Iustitute, May 15, $18 \% S$, by ITemry I. M. Berlialubine, (late Chief Engineer of the Water Depratment, it is stated that the minimum draily reveroge flow of the Schuylkill river is mearly 1,665,000,000 gulloms. This amount is mearly 1,000,000,000 less then the uetual areverge flow.

Abaut the year 18(5is, Mr. Berlinbine, being then in offiee, mude a survey of the Schuylkill whter-shed, and found it eontained 19\&2 square miles. The arerage minfall for the lust fwenty genis, hus been found to be about t5 inches.

This rainfall would amount to, within a small firaction, S00,000,000 gallous on every square mile; af whirh 60 per eent. ean be utilized. This aluount of rainfull on 1942 square miles, would yield a daily alerage flow of the SchuylKill river, throughout the yerlr, of 2,500,000,000 gallons, which could be utilized for ureter-power; und this remount, as above stated, is only 60 per cent. of the rainfall."

In his Report for the yenr 1S65, Mr. Berliubiue says:
" In the old wheel-house there are eight double-reting pumps, sixteen inches in dirmeter, propelled by breastwheels, cull ome by turbine-wheel. In the new wheel-house there are six double-acting pumps, righteen inehes in diameter, propelled by turbines. The full eapmeity of both these works, at ordiunery stages of the river, is 2S,00O,OOO gullons per clay."

In the table of Operation at Fairmount Works during 1865, we fiul the mumber of gallons (by register) pumped per. तlay ran clown to the amount of only 13,50S, $; 0$? !fallons in Jomurty: and to $13,007,223$ in December, when the river was finll.

Why did not Mr. Berkinbine pump the 2S,000,000 gallons during the remailling eight months, when the river was fall, insteal of employing steam-power to pump 11,000,00O gullons, ut u cost of $\$ 20$ juev 1,0OO,OOO gallons, when it could have been pumperl by wrater-power for nothiu!!?"

Your Commission caunot answer that question; but by examining the W. D. Reports, it is found that steam-power is invariably employed, whilst water-power is wasted, at Fairmonnt.

The average daily pmupage by Mr. Berkiubine was about $15,000,000$ gallon-, with the three turbines in the new wheelhonee, the old breasi-wheels and the small turbine, the theoretical eapacity of which was $28,6: 36,000$ gallons. The same has neeurred both before and since, ats appears by table X .
\$30 Mr. Frevinbiure steys, "Thr rrorengement af the machilure! of 1s\%o, is simm!! re repetition of the dejects of the "flumeratus of 1 sfio)."
"Wias wot the defertive "pmetretus of 1stio, "fmeroted by, rend everted at fiairmount ululor the sthprevisinn ourl fillouldodge of Mr. Berkimbiur:"•

Yee, that appears to be the ease, becamse he was Chief Enginere of the Water Department at that time. In the ame address, Mr. Berkinbine siys, "The turbine wheels and pmons, figs. 1 and 2, put in the works in 1860, were under my own supervision, but are not now satisfictory to me."

These are the turbines Nos. 7,8 and 9 in the new wheelhouse at Fairmount, and correspond the illustrations given below.

8 31. Mr. Berlimbine set/s, " With properly arranged and managed marhinery, a delly arerage of i35, 0000,000 gallons ranlal bre plumped ut Frairmaunt."
"Wh!/ dial he not jump that joromortionate amoment uhen he hed the mesncesfement of the melhinery he hed himself
 "ume:"

Mr. Berkinbine did not say in his address to the Franklin Institute, why he did not aecomplish what he said could be done; nor did he give any data for elueidating or removing the alleged defeets.

Your Commission believes that $35,000,000$ gallons or more, can be pumped per day with the present turbines at Fairmount, if the pumps were made larger or the gearing reduced, so as to make the present pumps run faster in proportion to the wheels.

8 32. Mr. Berlinhine says, "The wheels now in these worles can absorb more than the average flow of the viver. Little can, therefore, be !atineal by increasing the number of wheels." Can that be so?

No. Mr. Berkinbine underestimates considerably the flow of the Schuylkill River.

Two new turbines for Nos. 2 and 6, and by altering the pumps in Nos. 3, 4, 5, 7, 8 and 9, would probably double the aetual pumping capacity at Fairmount.

INCREASE OF COST OF PUMPING WITH WATERPOWER.

833."In the W.D. Report for 187\%, it appears that the pumpage at Fairnount has exccected that of any other year, but the expense per million gallons is greater than that in any other year. Should not an increased pumpage cause a deerease in cost per million gallons pumped?"
The cost per million gallons pumped at Fairmount should certainly deerease with the inerease of pumpage, and vice versa, when only the running expenses are considered.

SMALL PUMPAGE AT FAIRMOUNT.

\&34." The average pmompage per alay at Fairmonnt in 1872, uas ouly 19, $898,7 \% 6$ gallons, the lust three new wheels and six of the largest pumps luvin! just been put in; and all at work in perfect order. Why was that pumpage so small?"

Your Commission cannot answer that question.

COST OF STEAM ANI) W'ATER-POWER.

3.35 Mr. Berkillbine ser!s, " That stemm-power is cherfper then wreter-power." Ls thut so?

No; water-power is cheaper than steam-power, which is a well-known fact.

The Mambacturers at Manaymo whon pay $\$ 13,100$ rent for 1000 home-power of water ammally, find it cheaper than steampower.

The less water pmoned at Fairmount, the more expensive will it be per million gallons, becemse the interest on plant and ruming expenses are nearly the same, or independent of the quantity pumperl. The extravagant misuse of the water-power at Fairmont more than doubles the expense of its pumpage.

TWENTY-FOURTH WARD STEAM PUMPING WORKS.

> iff. "What was the cost per milliom gallons pumpeal into the standpipe by the abomdoned Twenty-fourth Ward Worles, with and without interest on plant. How long were these woms in operetion?"

The Twenty-fourth Ward Steam W orks were first started in the year $1855^{\text {, }}$, and abandoned in the year 1870.

When started, they eost $\$ 360,000$, and, according to the W. D. Report of $1860,28: 3,646,000$ gallons were pumped with $\$ 6,186.87$ ruming expenses that year, which makes the cost of pumping $\$ 21.46$ per million gallons. Six per cent, interest on $\$ 360,000$ is $\$ 21,600$; with which the cost of pumping will be $\$ 97.60$ per million gallons.

These works had been in operation only fifteen years when abandoned.

Origimal cost of the		\$360,000
Six per cent. interes	aars,	324,000
Ramming expenses		91,303
	Total,	\$775,303

During the fifteen years operation, these works pumped $4,254,791,000$ gallons into the standpipe, which makes the cost $\$ 182.22$ per million gallons pumper:

In caleulating the expenses of supplying West Philadelphia with water, the cost of the first Twenty-fourth Ward Works should be added to that of the Belnont Works, in order to make a fair comparison with the cost of water-power at Fairmomint.

§37. WATER FAMUNE.

L'Witudelpliar, Non. 16, 15%.
John W. Nystrome, Esq.
Dear Sir:
Enclosed is an article cut firon tordrag's " Record," which indiates fears of a water famine.

I beg you to submeit this article to the consideretion of your Water Commission, for a criticism on the steme in your Report wow in progiess.
I (em, Vours Resppertfinlly.

> JAMES IIAWORTH.

[${ }^{\boldsymbol{\omega}}{ }^{\boldsymbol{T}}$ om the I'ublic Recorld.] FEARS OF A WATER FAMINE.

two pumping engines disabled, and the sciluylikild very low.

Chief Engineer Dr. McFadden, of the Water Department, was not in his best lhumor yesterday. The cause of this was that there promises to be a searcity of water next summer. The six million gallon Worthington engine at the Delaware works broke down on Tuesday, and on Thmrsday the ten million gallon Simpsen engine at the Spring Garden works was disabled. Thus a pumping capacity of $16,000,000$ grallons per day suddenly ceased in the course of one week. Added to this, the water in the Schuylkill has become imprecedentedly low.
"Lower, in fact," said Dr. MreFadden, "than has ever been known at this seaten of the year. On Thursday I telegraphed to Mr. Smith, the eonsulting engincer of the Philadelphia and Reading Railroad, who has charge of the Scluylkill canal, asking hime to open some of the locks and allow the water to eome down the river, as we feared that onr supply would run short. To-day I reeceived his reply, which does mot give much consolation :
"W'e have no -mphes in any of onr dams. One flash-hoards were all di-placed in Octuber. Onr trade is heavy, and we have hardly water enongh to acemmodate it. Our reservoir is only lalf full, and we are drawing on it to supply the upper river. The river at Flat Rock ionot far from a donhle minimum flow. If I notice by onr reports to-morrow that Faimome is falling I will try to fill it up so fan as I ean with safety.'"
"Now, the tromble is just here," said Chief Engineer McFadden; "there has mot heen a soaking rain since the 15th of May, and con-epuntly the river is rmming dry. We are just holding our own. I camot tell when the engine at the Delaware River Works will be ready. For the present, the people in that seetion receive theirsupply from the Corinthian hasin. The constant strain upon the machinery has renulted in its locaking down. We have not had time to clean or repair our machmery for a year. It is fortunate this did not ocenr in the summer. When I asked Comeils for an extra appropriation for boilers at Belmont, the cry was raised, 'Jol, job!' If an accident shonld oceur there at the present time, the people would have it bronght home to them that something else should have been done than to raise such a foolish ery."

REMARKS ON THE ABOVE.

Your Commission visited the Delaware and Schuylkill WaterWorks to examine the extent of breakage of the pumping engines, and found that the Worthington engine at Kensington had not broken down, but, as we were informed, the slide-valve seat lad worn so as to leak, and the engine stopped on that account. It is possible that the valve-seat had been thus injured
for want of proper lubrication. 'The slide-valve was, however, soon made tight, and the engine started.

After coneluding the experiment at Belmont, November 16, your Commission went to the Sshuylkill or Spring Garden Works, to examine the supposed broken-down Simpson engine, and, to their surprise, found it working at full speed. They were informed the engine was stopped a few hours the day before, to tighten up a key, and started the same day at 5 o'clock P.M.

Your Commission can see no indication of a water famine.

ACTUAL PERFORMANCE AT FAIRMOUNT.

\& 38."What is the mumber of gallons retually employed at Fairmount by the old wheels, and by the present turbines, respectively, for mamping one gallon 10 jert high; also, the relative cost of plant and repuirs?"

For the solution of this problem, application was made to the Chief Engineer of the Water Department, for permission to measure the quantity of water consumed by the wheels, and pumped thereby into the reservoir, viz:

> 1010 Spruce Street, Pimladelphia, August $22,1878$.

Dr. Wilifam H. McFadden,
Chief Engineer Water Department.

Sir :-Mr. James Haworth has engaged two associates and myself to investigate the water-supply of Philadelphia, in view of its future improvement.

The Commission desires to make some measurements at the Fairmount Water-Works, for determining its actual efficiency, and ask your permission to do so without interfering with the operation of said works.

I would also ask if you will be kind enough to appoint one of your Assistant Engincers to join the Commission.

Yours Respeetfully,
JOHN W. NYSTROM.

Water Department, Pilladelfilia, September 4, 1878.

Join W. Nystrom.

Dear Sir:-It is customary for gentlemen seeking the courtesy of the Department to make the request in writing, and state the purpose and object.

If you, as the agent, will furnish the request, and the purpose of your authority, I will submit it to the Committee, and recommend their approval. While my Assistant at your request would aceompany you, there would be a delicacy in receiving pay for such services. I have, however, consulted Mr. E. Geyclin, who will aceompany and give all the faets which he, as the builder, construetor and engineer of the machinery, is fully (alrable of doing.

At our earliest convenience we will send you the map, and a copy of the Report for 1877.

Yours Respectfully,

W. H. MCFADDEN.

Pimladelphia, September 5, 1878.

Dr. Whlidam H. McFadien,

Chief Engineer Water Department.
Sin:-Your favor of yesterday is received with thanks.
The olject of the Commission appointed by Mr. James Haworth to examine the water-supply of Philadelphia, is to find out, if possible, if any improvements can be made therein. With that oljeet in view, Mr. Haworth has propounded some questions, the mont important of which is, "How many gallons of water are actually consumed at Fairmount for pumping one into the reservoirs?"

With your permission to make some measurements and experiments, without interfering with the operation of the waterworks, the Commission can answer that question correctly.

In case the required permission is granted, you are hereby respectfully requested to appoint an Assistant Engineer of the

Water Department to witness the measurements and experiments, on condition that said Engineer shall receive no pay therefor, or favor whatever, over his regular salary in the Water Department.

Your carly answer, with the required permission, is earnestly craved.

Very Respectfully, JOHN W. NYSTROM.

Philadilipilia, September 30, 1878.

Dr. William H. McFadiex,

Chief Engineer Water Department.
Sir:-Your attention is respectfully invited to the consideration of my letter to you, dated September 5, asking permission to make some measurements, de., at Fairmonnt, which letter yet remains unanswered.

Very Respectfully,

JOHN W. NYSTROM.

> Water Department.
> Philadelpiita, September $30,1878$.

Join W. Nystrom.

My Dear Sir :-Yours of 30th to hand, and will be submitted to the Committee on to-morrow afternoon, at 3 o'cloek, when I would be pleased to have your Committee present with a letter of request from your authority, Mr. Haworth, stating your object and purpose, as per my answer to yours of September 5, 1878.

Yours, Very Respectfully,
WM. H. McFADDEN,
Chief Engineer Water Department.

The Committse on Wiater.-A meeting of the Committer on Water, of Councils, was held T'uesday, Oetoler 1, 1878 ; Mr. Charles Thompon Jones, chaim:m, presiding.

The fullowing letter was read by the elerk:

I'hiludetphiat, October 1, 1875.

To Dr. Wim. IV. MeFiedrlen, Chief Engincer:

1)ear Sir:-The bertrer of this, Mr. Jolle W. Nystrom, is rhairmen of " Commemsion "ppointrel by me for the purpose of imestigating the water-sumply of I'hilullelphiar, the otjocet of which has been rxplained in his applicution for permission to malie some meresurements and experiments ut I'uirmount. The Commissione romsists of John IV. Nys:
 roguest thet gon will perosit the neresselly forilities to the Commissiom fon the ucromplishoment of its importunt plerpose.

Risspectiolly Iours,

TAMES HAWOOTH.

Mr: Burlhey mexed that the permission arked for he gramed,

Mr. fone, ('hamam, desired to kinw whether the propured inverig.ation would b- makle in the interest of ann onganization which are trying to ohtain the prosage of meatures lenking to a utilization of the water of the Schuylkill river aboe Fairmome dam.

Mr. . Xi-from replicel, that he linew mothing of sum an organikation ; int the prophect inve-tigation was simply reientific in it chruader.

Yustion.- IV hat benefit wouht such an invertigation he to the dity, and to the Water Dipurtment?

Mr. Ny:trom antwered, that it would reveal the actnal operation of the work-, and that there ha* never been a thorongh scientife and technieal investigation made of the present wate:-work- at Fairmount.

Mr. Jones asked: "How do you know that such an investigation has never been made ?" To which Mr. Nystrom replied, that there is nothing of the kind on record in the W. D. Reports.

The Chief Engineer, Mc Fadden, maintained that the Commission of Engineers of 1875 made an exhanstive investigation of the Fairmount works ; and, after a long argument in relation to the different systems into which the water-supply of Philadelphia is divided, Mr. Bardsley's motion was finally agreed to.

The Chief Engineer then offered to give all facility and aid in his power to your Commission, and he gave orders to that effect to the Superintendent and Engineers at the Fairmomt. works ; which orders were kindly and cheerfinly eomplied with. All information required about the works was promptly and sincerely given.

THE LOG, FOR MEASURING THE WATER AND DUTY OF THE TURBINES.

This instrument is construeted upon the same principle at the marine log, only that the propeller is much larger in diameter, and the eloek-work geared to indicate feet instead of miles.

The aceompanying illustration represents the loge, ennsistiner principally of a propeller, which is set in rotation by the current of water in which it is immersed.

An endless serew, on the end of the propeller shaft, sets the elock-work in motion in the casing, and the mmber of feet of emrent pas-ing the propeller is indicated by hands on the dials.

The log has four dials, derimally divided, so that eath division on the first dial from the propeller represents 10 feet, on the second 100 , on the third 1000 , ame on the fourth 10,000 feect.

Thus, with the four dials, 190,000 fint (an be indicated. A sleeve covers the dials when the log is operating, to prevent solid matter in the water from interfering with the hands and settling in the instrument.

Two of these instruments were constructed expressly for measuring the water at Fairmoment, and other water-works, by your Commission.

Suale, 2 inches to the Foot
The mumber read on the dials, multiplied loy 1.14, is the space in feet, "hich multipliey hy the area of eross-section in square feet of the current, gives the enbie feet of water that has passed thee logr. Both instrmments have propellers of equal piteh, ant the same propertion of gearing in the elock-womks.

Both were tried in the same current of water, and the coeflicient, 1.14, catablished by experiments.

JONVAL TURBINE AT FAIRMOUNTT.

The feftowing ithistrations, figures 1 and 2, represent a side elevation amel cros-secetion of the Jonval turhime, ats constrneted by Vmil Geyelin, and ereeted in the new wheel-honse at Fairmomit.

The flume, leading from the forchay to the turbine, is made of wronght iron, and is celliptiala, 7^{\prime} by $12^{\prime} 9^{\prime \prime}$ diameters. For the larger turhin, in the old wheel-honse, the cross-section of the flume is rectangular.

In the experiments made ly yomr Commiswion on these tur-hink-, the log was placed in the flume, a little on one side, and alob atheve the midelle, where the mean velocity of the enrent was expected to be.

Qis In the years 1859 and 1860 , experiments wíth different kinds of turbines were made by the Water Department, under the supervision of Mr. Berkinbine, then Chicf Engineer.

The duty obtained by these experiments varied between 53 and 87 per cent. ; the highest being given by the Jon val tarbines, namely, the Geyelin Jonval 82, and Stevenson Jonval 87, and the lowest only 53 per cent., by the Monroe and Bartlett turbine.

Although the Geyelin turbine was the second best in cuty, it was considered to have many practical advantages over the others, and was therefore adopted for the Fairmount Water-Works.
rig. 1.

The illustrations are kindly furnished by Mr. Berkinbine.
The most important feature of a turbine is its cluty pereentage, ?ut it appears that no such feature was recquired by the contract for building said turbines; nor was any experiment made to find out the same. Also, in his late proposition to the City Councils to furnish a duplex turbine, Mr. Geyelin does not bind himself to any percentage duty of the same.

93

PRELIMINARY DUTY EXPERIMENT.

The Commision met at Fairmonnt, October 17, 1878, at 9 o'elock A.M., filly prepared for making experiments on all the whecle; hat the Chief Engineer of the Water Department would not allow the turlines in the old wheel-house to rum, on aecount of searcity of water in the dam. Only the two wheels Nos. 8 and 9 , which are the mont econmical, were ruming; the wheeds Nos, 3,4 and 5 being too extravagant on water.

Fig. :

Tran verse sectien of Pump-Howe. with Turbine (itarng and I'ump Tbe lower part of Wheel Ca se shown in Scetion, exhithting cinde-Cams, Whed and diate.

Experiments were made lye the wheel No. 9, which was found to wee 720,468 cublic feet of water per hour, and pmomeed 25,570 cubte feet, in the same time, into the Corinthian basin, 11.5 feet high, which is $2 s$ to 1 , or, in other words, it required 28 gallons to pump 1 into that reservoir.

In this experiment, the log was placed ontside the grating in the archway leading from the forehay to the turbine, by which only the water used for motive-power was mensured.

The pumpage was taken from the reqister, which showed a difference of 716 revolutions during the hour of experiment, and leakage assumel to be 20 per cent.

The pumps made 12 double strokes, and the turbine 33.3 revolutions per minute. The natural effect was 307 , and the realized, 92.7 horse-power, or 30.3 per cent. of the natural effeet.

The head of fall was 13.5 feet average, and the circular gate partly down to prevent the wheel rimning too fast.
N. B.- In the above caleulation, it is assmmed that the leakage was only 20 per cent. ; but subsequent experiment proved it to be 25 per cent., as will appear hereafter.

DUTY EXPERIMENTS AT THE FALRMOUNT WATER-WORKS, OCTOBER 24, 1878.

The first regular experiment was made with turbine No. 4 , by phacing one \log in the flume leading to the turbine, where the section area was $\$ 2.58$ square feet ; and the other log in the outlet of the main into the basin, 3 feet in diameter, or 7.068 square feet section.

The whee was started at 11 o'elock, and observations takens for every 10 minutes, as shown in the following Table XI.

Stopped at 12 obloek, when the register showed a difference of 55.5 revolutions for one homr ; the \log in the basin showed 3395 , and that in the flume 11,169. The proportion of water used by the turbine to that pumped into the basin, will then be

$$
11,169 \times 82.58: 3395 \times 7.068=38.6: 1
$$

That is, the turbine requires 38.6 gallons for each galton pumped into the reservoir 90 feet high, or 45 gallons to pump to a height of 105 feet, and utilizes 22.5 per cent of the natural effect.

For the seeond experiment, Table XII, the log in the hasin gave 3135 , and that in the flume 9911 , from which the proportion will be

$$
9911 \times 82.58: 3135 \times 7.068=37: 1
$$

That is, the turpine requires 37 grallons for each gallon pumped into the reservoir.

It will be noticed that it requires 38.6 gallons at high tide, and 37 at low tide, to pump one gallon into the reservoir. The head of fall at high and low tides is, respectively, 10.45 and 16.92 feet, and the lift into the reservir is 90 feet. $90: 10.42$ $=8.6$ galluns, and $90: 16.92=5.3$ gallons, the theoretical value of pumping one gallon into the reservoir.

The theoretical capacity of the two pumps, 22 inches diameter and 72 inches stroke, with 5 inch piston-rod, is 61.718 cubic feet for cach double stroke or revolution, which is equal to 461.68 gallomis.

When the pmonps make 9.2.5 double strokes per minute, the Jeakage is 20 per cent., or 12.34 cubsic feet for each revolution, or 114 cubse feet per minute. The pmops will then deliver 49.37 culbic feet of water into the reservir for each revolution.

The duty realized by the turbine No. 4, is only 22.5 per cent. at high tide, and 14.2 per cent. at low tide, of the matural effect. The reaton why the turbine gives the the smallest perentage at the higheat head of fall, is that it is construeted to run with the greatest advantage at high tide.

At low tide, the di-charge is contracted by the circular gate, to prevent the turbine from romning too fast, and the water thus passes under the grate with a force and velocity many times greater tham the penwer utilized ly the turbine.

As regards eronomy of water-power, it makes very little difference if the turbines No. 3,4 and 5 , rim at high or low tide.

DU'Y EAl'ERIMENTS WITH TURBINE NO, 7, OCT. 26, 1878.

The turbine No. 7 is in the new wheel-house, and is smaller than these its the old honse ; its pumpage cen be led either into the Fairmount or the Cominthian basin, with that of the turbines Nos. 5,8 and 9, but samet be leel alone into thent whilst the others are ruming. 'The delivery inte the Corimh hitm basin could not, therefore, be measured by the log for one turbine sep-

96

arately, except by stopping the others, which your Commission then had no authority to do.

The water consumed by the turbine was measured by a \log in the flume, which gave $14,491 \times 78$ square feet $\times 1.14=$ $1,174,539.72$ cubic feet, which pumped $30,446.64$ cubic feet into the reservoirs, by 882 revolutions in two hours. This is a consumption of 38.6 gallons for pumping one into the reservoir.

It was expected that the water pumped by this experiment was to go into the Corinthian basin, and, after having rill for half an hour, it was found that the revolution lad suddenly increased, and by inquiring for the canse of the same, your Commission learned that the stop-valve to the Fairmount basin had been opened, which operation was not in the programme. It, however, turned out to the advantage of showing that the turbine gives a higher duty by pumping into the Corinthian basin, as seen in Table X1II .

The theoretical capacity of the tiro pumps, 18 inehes diameter and 6 feet stroke, for one revolution is, . 43.15 enbic feet. Pumpage for each revolution, . . . 34.52 " Leakage, assumed to be 20 per cent., . 8.6.3 "

The programme of this experiment was to start at high tide, and observe how the revolutions increase with the fall of tide, and how the duty is affected thereby ; the result of which reveals what has been anticipated, namely, that the turbines at Fairmonnt are very extravagent on motive-power.

The Commission of Engineers (1875) assumed the duty of the Fairmount turbines to be 60 per cent. of the natural effect, and says: "Under favorable circumstances 80 per cent. can be realized, and 75 per cent. ought to be obtained, when flash-boards can be used on the dam, and the wheels run only when the tide is below mean height."

The raising of the dam by flash-boards inereases the waterpower, and will pump more water, but deereases the duty percentage with the present turbines.

The same Commission recommended to alter the large turbines, so as to operate more economically ; but do not say what alteration should be made.

Your Commission believes that, apart from the pumps being too small, the wheels and guides are not properly constructed or proportioned for economy, but camnot say positively what are the errors, if any, without examining the details when the turbines are taken apart.

A well-known law of hydraulies is, that the higher the head of fall, the greater is the pouer of equal quantities of water; which law is infringed upen hy the present turbines at Fairmomet. The complaints naturally made that the turbines have been run at high tide, and stopped at low tide, under these unwarrated circumstances, have not been wholly justifier ; but the engincers have not defended themselves, by exposing the trine condition of the motors, as they ought to have done.

The exceedingly low percentage of duty given by the turbine, particularly in the seend experiment, is not wholly due to fanlts of the turbine, but more ly rmming it $t=0$ show.

Your (emmiswion regulated the specel of the turbine to rum the same an did the other (wo, Nos. 3 aud 5 , which were rmming at the same time.

The quantity of water ruming through the turbine is almoset independent of the mumber of revolution- per minnte: that is, nemly the same quantity of water will rom through the turbine, if kept stationary, and the gates wide npen, it when it ran faster or slower.

Mr. Berkinhine's statement, § 32, prage 82, that "the wheels now in these works (enn aheorb) mome than the areage flow of the river," is not s 0 much wroug after all ; but if he had said that the power of the average flow at Fairmome is realized by the present turbines, he would have been very far from right. With the average flow, at least double the quantity of water could be pumped by properly construeted turbines.

TABLE XI.

Experiments with Turbine No. 4, Oct. 24, 1878, one hour, from 11 to 12 o'clock, during Higii Tide.

TABLE XII.

Same Turbine nuring Low Tide, Oct. 26, 1878.

NOTE TO TABLE XII,

* The counter or register must evidently have slipped in the ten minutes between 2 h .20 m . and 2 h .30 m ., making it read 10 too much. Mr. Le Van of your Commission says that he saw the counter slip on other occasions.

TABLE XIII.

Expermients with Tubbine No. 7, Oct. 26, 1878, two hours, frem 1 to 3 P'.m, dering High Time.

It is not to be understood by Table XIV, that the maximum duty will be realized simply by regulating the revolutions by the gate to suit the height of fall, for it means that the gate should be wide open; but then the turbines will make a great many more revolutions at low tide than required by the maximum duty.

It is, however, better to regulate the proper revolution by the gate than to run the turbines too slowly, as is generally done in the old wheel-house.

The turbines Nos. 7,8 and 9 run too s!owly at ligh tide, and much too fast at low tide, when the gates are wide open.

The turbines Nos. 3, 4 and 5 run just right, with the gate wide open, at ligh tide, that is, with a fall of 9 feet, but as the tide set., they run much too fast, showing that the pumps are too small for that proportion of turbines and head of fall.

Your Commission asked permission to rum the turbine No. 7 from the time of high tide, with the gate wide upen, until its revolutions: increased to the maximum it can rom with safety, in order to find by that means the point at which the pumps are the proper size for the wheel and head of fall: lut the engineer rephied, that it is uot allowed to mun fister than 10 double strokes per minute, which it made in the experiment, Table XI.

It was remarked, that "there is mothing gatined by ruming the turbines fast, becealse they will then soon get out of order, and must be stopped so much longer for repairs." This statement corresponds with the condition of the turbines Nos. 3,4 and 5 , in the old wheel-house, which appear to be more delieate in their novements; but the pumps No. 7,8 and 9 , in the new wheel-house, generally make 12 donble strokes per mimute, and often 13 or 14 , and even run as high as 15 , without any apparent inconvenience. In his address to the Franklin Institute, Mr. Berkinbine says, "At mean-tide, the pumps make 29 single strokes, and when the tide is out, they make 35 strokes per minute," which is $17 \frac{1}{2}$ double strokes. The faster the turbine runs, the more water will it pump; but the consumption of water driving the turbine will not be in the same proportion when the speed is regulated by the gate.

The higher the head of fall is, the greater will be the power of an equal quantity of falling water ; but that law does not imply that the increased power is unconditionally utilized for pumping. The experiment; made with turbine No. 4, and recorded by Tables XI and XII, show that a higher per cent. of duty wats obtained with 10 feet than with 17 feet fall, the reason of which was that the turbine ran much too slowly, by not letting on sufficient water at low tide, and that the pumps are too small for that turline and 17 feet fall.

§ 39. HORSE-POWER AND DUTY.

The natural ceffect of the waterfall and available duty thereof, are -imply expresed in the foilnsing formulas, in which letters denote:
$H=$ heisht of fall in fect.
$\mathrm{C}=$ embie feet of water paw-ing through the motor per minute.
$h=$ height, in teat, to which the water is pmomped.
$c=$ enbic feet of water actually pumped and delivered into the reservoir per minute.
IP horse-power of the waterfall, or maturn effect.
$\mathrm{H}^{\prime}=\quad$ " reatized by the pumpare.
$\eta_{c}=$ duty percentare.

$$
\begin{array}{lll}
\text { Nitural effeet, } & I P-\frac{1 I C}{5: 30} & 1 \\
\text { Realized effeet, } & I P^{\prime}=\frac{h c}{50} & 2 \tag{2}\\
\text { Duty pereentage, } & \%=\frac{100 ~ h e}{110} & 3
\end{array}
$$

Theme are the formulas by which the horse-power is calenated in Tables NI, N1I and NIII.
840. CONATIRUCTION OF THE FALRMOUNT TURBINES.

Philudelphir, November 12, 18\%8.

John W. Vystrom, Esq.
My Dear Sir:-In your penling Report on duty per~ formance of the turbines at Fairmount, it is stated that the construction of the wheels camot be examined without taking them aphert.

The rer! small duty pereentage obtained in your experiments, perticulurly with turbine No. 4, justifies strong efforts in ascertaining the construction of those wheels, so as to alemonstrate any possible alefects.

I am Yours Respectfully,

JAMES HAWORTH.

The turbine No. t is now (Nov. 25 th) being taken apart for alteration to the duplex adjustable pattern, so that your Commission hats an excellent opportunity to examine it, and proxlnce the aceompanying illustration, representing a evlindrieal seetion throngh the centre of the buckets, laid out flat.

The illustration was first drawn on a large seale, from which it was reduced by photo-electrotype, -0 as to represent the true construction of the notive portion of the turbine.

The width of the buckets, both in the gruides and wheel, is 203 inches in the diededion of the radins; and the areas of discharge from the guides and wheels are 2116.5 and 27633.25 square inches, or in proportion ats $: 32: 42$; which is the same proportion as that in the Stergnson's turbine, which gave the highest duty, ().8777, in the eompetitive experiments at Faimonnt, 1860. Geyelin's tumbine, which then gave the next highest duty, 0.821 , had the proportion of these areas as $37.7: 44.6$.

The principal reasons why the turbines Nos. 3,4 and 5 , now at Faimount, give so very low dnty are: First, That the wheels are much too deep, being 17 inches, or the same as the gnides; Secondly, That the form of the buckets makes a very easy passage for the water to slip through without doing much duty, as can be rearlily perecived by a glance at the illastration.

The turbines Nos. 7, 8 and 9, in the new wheel-house are evidently better constructed, as proven loy experiments made by your Commission. From notations hy Mr. Berkinbine, of the construction of these wheel-, it appears that the areas of discharge in the guidess and wheels are both alike, or 2000 square inches.

In his paper, real before the Framklin Institnte, Mr. Berkinbine said the area of discharge in the whee i- 1700 square inches.

In Mr. Gevelin's first experimental wheel, of 1860 , these areas were uanty alike, or 12 and 42.6 s suare inches.

The velucity of diselarge from wheel No. 4 , in the experiment at hight tide, October " 2 , 1878, low sour Commiscion, was 19.5 feet per secoud, which correaponds with a head of fall 5.9 feet, whilst the actual head was 10.42 feec. 'The velocity of the cirele of perctus-ion was about 13.5 feet per second, which makes the actual velocity of discharge into the tail-water, alont $19.5-13.5=$ (i) fret per secomd.

In the seend experiment with the same wheel, at low tide, Oetober 2f, the welocity of diecharge was 17.7 feet per second, which correeponds to a head of fall 4.87 feet, whilst the actual fall was 16.92 fect.

FIRST EXPERIMENT ON LEAKAGE OF THE PUMPS.

81. "What is the leakage of the Pumps at Fairmount, determined by the method I proposed to the Commission of 1S\%\%?"

On Monday morning, Oetober 28, the Fairmount basin was drawn down three feet, for the purpose of finding the leakage of the pumps by rumning the turbine No. 4 at so slow a speed that the leakage wonld be equal to the pmopage, that is, when the main is lept full, hut no water enters the reservoir.

The turbine was run so slowly that it barely went over the centre, and it was found then to make one double stroke or revolution in 28 seconds, but some water still flowed from the main into the hasin. The speed of 28 seconds for one revolution makes 2.15 revolntions per minute, which, divided by the regular speed 8 , makes the leakage 26.9 per cent. Not being able to run the turbine any slower withont stopping, the leakage was approximated to 20 per ecot, which is the same as found by Weir measurement, made by the Commission of 1875 , for the 1umps Nos. 7, 8 and 9.

With a speed of 9.25 donble strokes per minute, as made in the experiment Oct. 21, (sec 'Table XI, the leakage will be only 23 per cent.

SECOND EXPERIMEENT ON LEAKAGE OF THE PUMPS.

It has been suppoied that the pumps for wheels Nos. 1 and 2 have leaked so badly as not to pmop a drop of water for many year, (see § 15 , page 22.)

On the 26th of Oetober, the wheel No. 1 was running, and your Commission went up to the reservoir to see if any disturbance on the surface of the water orer the ontlet could be observed. The wind was perfectly caln, and the surface of the hasin as smooth as a looking-crlass, lut not the slightest indication of disturbance could be seen over the outlet, whiel is in the middle basin. Your Commicsion then suspected the pump to leak so badly as to pump $n o$ water.

On Mondely, the 2 ath of Oetober, the front pmomp-head was taken off; and the leakure exmined by letting on the finl water pre-nte on the latk side of the piaton, but no lealinge of much
 leah old com-iderably. It whas alppened that the hark deliseryvalve lealul sulticiently for admitting water pres-me on the back of the pioten, whidh it actually did. This exammation
 31 , another inspection was makle, as fiellons:

On aceome of the has heon of the promp being cist silide that sitb of the priton comld not be (xamined like the front side. The sterpesalse in the hain was clocul, and the min empted fion lofore ond fillel with air; the stop-valre upenel, and the moin retilled with nater beg gratation, foreng the air out into the ba-in, te indicate the exnet of of the disecharge, which was before mot idfinty howew. The turhine (No. 1) wise sturtul

 Whe then com-idered that the dia-diange, hing 11 fiet mader the

 lates ath paper, were thrown on the water ore the di-chatere, and fimbed to move rion ly in the diecetion of the diachavge, ab mot two fot pre minnte, which yome Commission thenge would indicate that water contered the hatin firom the main. Dhengh the pi-ton did not leak very math, the valves leaked eomeiderably, and your Commisaion is, therefore, not satisfied that the pump worlis well.

In answere to the question, "By what means is the eondition of the packing, or leakage of the piston, ascertained?" They said, by moticing the turbine roming very fast, and also by the hemp of the packing stopping up the holes in the stranger of the pipe leading to the step (pivot). These two answers are of great importance, and deserve particular attention.

1st. The condition of the packing, or leakage of the piston, is ascertained by moticing the turbine rmming musmally fast, that is, when the l aiare is so great as to nearly equalize the
pressure on both sides of the piston, and when that happens, the pump may have run for months without punping a drop of water, but merely balaneing the column of water to the reservoir.

If the looseness of the piston was known, it would be easy to calculate the amount of leakage, hut we mey call
$a=$ area in square inches of the leakage aromul the piston ; th
which must be added that of the valves, if :my.
$h=$ head of presisure in fiet.
$g=$ gallons of water leaked through the pisten and valves per $2 t$ hours. Then,

$$
\text { Leakage, } \quad y=36,410 c_{1} / h, \quad 1
$$

Example 1. Suppose the area of leakage is $a=3$ square inches of the piston and valves, and the head $h=90$ feet. Required the leakage per 21 hours.

Leakage, $\quad g=36,410 \times 3 \times 1 / 90 \ldots 1,026,756$ gatlons.
This leakage is one-half' of the pmupage of turbine No. 1.
A leakage of $a=6$ square inches, which is equal to a circle of 2_{3}^{3} inches diancter, would be equal to the pumpage, or 12 double strokes per mimute, would just balance the column to the reservoir, without pumping any water. When the leakage is greater than 6 inches, the turbine will run faster, which must have been the case at Fairmount.

2 d . The " pivot" is the most delieate part of the turbine, and if deprived of water, it may get mined in a few minutes. The wearing out of the packing and the hemp, covering the strainer, may prevent the water from entering the pipe to the pivot.

Only the pistons for Nos. 1 and 2 are packed with hemp, the others are solid brass pistons, which appear to wear very well.

Arrangements could casily be made for measuring correctly the leakage of pistons and valves at any desired moment.

THIRD ENPERIMENT ON LEAKAGE, NOV. 29, 1878.

When proprine for duty experiments with turbine No. 7 , O. tuhere erif, the water in the flume wats drawn ont fore ins reting the loge and it wat then fomed that the walves leaked comederably; the i-, witem chemed from the main through the sin tion phabe into the flum: Afer concluding the duty experiment,
 hah one otheo pramp, which was terline d, on the grome! that the wrate the ver low in the hom, and that all the poover was

 gin on of the worle fimm! that the valves of other turbines also lakend, wher upen it was de idel to wionir all the vilves before the le hatere experiments shomld be mele.

On the 49 h of Nowember, there were 27 incho of water on the dan, sme the permi ion was then granted.

The turbines N(1. , 5, 7,8 and 9, pump water direetly into the C'minthim hain throush at 48 inch min, which dishanges alusu the andean of the reservoir, where the flow emple be correctly ubarel.

Four signal stations were e-tablished between the basin and the work, for regulating the speed of the pumps acending to font methol of memsuring leakage, as before deseribed.

The remits of these heakage experiments are given in Table NV.

The propertionate leakage of the values and piston conld not be detemined hy these experiments. If the valve are tight, the whole leakure will be in the piston only when the pumps are working; lout if the valves leak, they will do so whether the pmups are working or not; therefore, part of the leaketge (harged to each pump in operation, may hwe leaked throngh the valves of the pumps at reat, and, consequently, the total leakige of the four prmpa, as given in Table XV, may be too high.

TABLE XV.

Expermexts on Leakage, Nov. 29, 1878.

If the ralses were tight, as your Commission expected them to be, on account of having been lately repaired, all the leakage must evidently have been throngh the piston, as shown in the Table. This leakage is, on an average, 25 per cent.; but it must be remembered that the valves were prepared for the experiments, otherwise the leakage would probably have exeecded 30 per cent.

§ 41. FOURTH EXPERIMENT ON LEAKAGE OF* THE PUMPS.

Philudelphiar, Nor. 20, $15 \% \mathrm{~S}$.

John IV. Nystrom, Esq.

M! I) =(tr Sir:-From the experiment mude, Oet. 2S, by your Congmission on plumps Fo. th, the leatiage is assummed
 r.un rer!! slonl!g at lifghtirle, abont firlonble strolics per minutce, allal wot a dropl of water entered from the main into the reservoir. Is yontr Commission culare that there is a commertion lutheren that main and the strandfijes. thromgh whirh woter might hate passed, and deceived your observeltions?

There is mo wrater commection between the stcemelpipe cend main of No, is mumps, with which I expert yom Commission to mulie experiment on lealirege.

Respectfully Ioulis,
JAMES HAHORTH.
 betweren the stomlpipe and the main of No. 4 pmop., and was informed by the engineer and men of the worli-, that the valve of that arnmertion himl not heen premed for reare, and that it was clowel during the expriment. It i= posible, hat mot likely, that. this rille whe apenel.
 pmoln, which were fomml to make ome domble stroke in $3 t$
 Which, th the rernlar -perd of \& revolutions, mahe the lakizge II. Frir cult.

Lukiore of No. :3,
I crabitre of No. 4.

Lakine of No. $\overline{\text { a }}$,

$991 \cdot 2$, millome per minute or $1,3.25,000$ gallons per $2-1$ hours.

§42. BELMONT WATER-WORKS AND GEORGES HILL RESERVOIR.

In obediene to your request to examine the ittam Works, on the 16 th of November, an experiment was made with the pumpage of engine No. 1, Behmont, which was the only one pumping water into the Georges Hill reservir.

The aceompanying Table X V' shows the results of the experiment.

The log was placed in the low standpipe, from which the water enters into the reservoir, dhring one hour, and the revolutions and other data were taken from the engine, at the same time. The outlet at which the log was placed, is 30% inches diameter, making the area of eros-s-section 5.028 sequare fiet. The log showed 3157 in one heur's run, which made the delivery 186,405 gallons in the same time. The water displaced by the for double-acting phongers, during the same hour, was 224,187 gallons, which makes the delisey 61 per eent., and the leakage $3!$ per eent. of the pumpage.

This great amome of leakage surprised your Commission, as it was expecterl to find there pmomes in grood order. Without knowing the "esnlt of the experiment, the engineer in charge said that the engine had beon rimning the whole summer, and on aceome of low water in the Schuyblill all the time, it conk not he stopped long enough for exmming the plangers and valvee, which he experecel would leak comsiderably:

The cmgineer ales) said, that at this seteron of the year, the pump draw in leaves and other matter, which settles in the vallees and make them leak.
"'hise exp riment was made withom any perions motice to any one in the Water Department, the object of which wat, to find out the resular everyday operation of the works. Yomr Commission went first to the Georges Hill reervoir, and phepared for the inserion of the log, after which one of them went to the works at Belmont, ton! swe the mming of the emgines; whech was the first information the enginer hat of the experiment then in operation.

TABLE XVI. Dyanames of Steam-Pump No. 1, at Behmont.

The enginery, evidently anxions to have his engine perform well, got up higher stemm, and the revolutions incerased, as seen in the arompranting Table X VT.
 (t) he onts 3.5 per cent., which is only one-tenth of that found by youn Commi-aion

Bat it mat loe reflombly red that the enginen and pmom were put in the beapm-ilile centition, and were runduring thee expriments lọ Worthingtonis own chefuers.
 inch, which cormpomel to at colmmo of water 191.12 fect high. The water in the rewervir was 16 fert of inches, which is 8 fect 4 inchec low then whon full.

The liceid of mion, from pump-well to centre of chgine, was 17 feet f indes, and the total head, from well to the surface of diecharg, was about 212 feet.

A report of experts and engineers upon the performance of engine No. 2 at Belmont, will be fonnd in W. D. Report for the year 1872.

The engine No. 2 was not running, on account of some boilers being sealed and eleaned. The engineer remarked, that the water pumped into the boilers at Belmont forms a great deal of scale, and gives more trouble in cleaning than any other boilers in the Water Department.

The largest engine, No. 3, was ruming, and pumped water to the east side of the Sclmylkill.

STEAM BOILERS AT BELMONT WATER-WORKS.

The boilers at the Belmont Works are of the French pattern, and known as elephant boilers.

According to the Repnrt of the Commission of Experts of 1872, these boilers evaporated about 30 pounds of water per hom per horse-power, with a consumption of about four pounds of coal, and steam pressure 49 pounds to the square inch-working a compound engine, for which two pounds of coal per hour per horse-power ought to be sufficient.

The boilers are encased in brick work, so that but little more than one-half of the boiler-shell eomes in contact with the products of combustion, which enters the chimney at a temperature of over 900 degrees Fahrenheit, against 297 degrees of temperature of the steam. Allowing 150 degrees difference in temperature of the stean and of the gases entering the chimmey, we have $900-(297+150)=453$ degrees lost by these boilers.

The manner in which the prolucts of combustion are comducted under these boilers, makes the hoating surface of the mud drums of very little utility for making steam.

By resetting these boilers, so as to return the products of combustion over their top, as is now gencrally doms in fueturies, a saving of from 25 to 50 per erent. of fuel would be attained.

These boilers are nsol at a! the Philadelphin steam waterworks, and are very extravagant on fued.

The acconpmying illn-tration reproments these boilers, which at Belmont are 14 in number, set two ower each fire-grate, making 7 sets.

Dinensions of each Boiler.

Length of shell,
Diatuetere of shell, Lengeth of mand droms, Diameter of mid drams, Number of "
" of neck",
Length of "
Heating surface of shell, " of mud drums,
Total heating surface, Length of grate hars, Wialth of grate hars, Arca of grate -urface, liatio of hmiting arliate to grate,
30.83 feet.

- 54 inches.

22 feet.
28 inches.
2
10
12 inches.
25 I square ft.
$30 s$ "
562
(a) inches.

52 "
22 square ft . $26: 1$
 by indicator cards. of which 204 hom-ophere wats ratiact by the pumpues, which mahes the duty sl per cent., at repreted by the Commiasion of 152.2.

§43. COMBUSTION OF COAL.

The size of coal used at the water-works is entirely too large for ceonomical firing, as the fire must be kept so thiek on the grate as to prevent perfect combustion. The thiekness of the fire on the grate, as obeerved by your Commission, varied between 12 and 15 inches, whilst 9 or 10 inches would be sufficient, and more ceonomical, even for that size of coal. Your Commission examined the boilers, coal and firing in different factories, in order to compare the same with those at the waterworks, and found the boilers' better set, small coal nsed, known as cgg and chestmut, and the thickness of fire varying between 4 and 8 inches.

The philosophy of combustion of coal is better known than respected ly engineers.

Combustion is the rapid combination of oxygen in the air with the carbon in the coal, or fire, which forms two distinct gases, namely, carbonic reid and carbonic oxide.

1. One pound of carbon, burned to carbonic acid, gencrates 14,500 units of heat.
2. One poond of carbon, burneal to carbonic oxde, fremerates 4,500 units of heat.

In the first case, which is perfect eombustion, the combination generates over three times at much heat as in the latter, which is imperfect combustion. When air enters from under the grate into the fire, carlonice acid is first formed, whith, when rising through a thick layer of fire, amotler atom of (arbom is taken mp, by which canhonic oxde is tormed.

The eronomy in (")mbintion consists in buming all the anhon to carbomine acd, which is acemplishat by having the fine so thin that ti e arid has no time of chane to take n, amother atom of carbon before it risen above the fire. The pertion emblotion
 than lyy large end. Ath this is well known by chancers and firemen, and the princent reas on why it is not mose generally attended to is, that it requines more care an ! slitl, but less work, in keeping the fire thian on the grate. The most economieal firing in the: Water D.parment, is at the Works of Chestmut Hill.

§ 4. SCIHYLKILR WORKS.

On the 18th of November, only two of the pmoning engines at the shluykill Work were runiner, namely, the compound
 huilt lex Mariack of Sme.
'The old Comish ongime lmilt lỵ. I. P. Marti- do Co., was undereoing repairs, athl-tarted Nowember 15.

The $20,000,000$ gallom compond ange buitt ly Cramp of Soms, hrohe down on the 2bth of september, and was still standing in that condition.

The prompere delivered into the schuylkill reservoir conld mot be measimed by the loig, on aremut of the mains entering at the hootem. Your Commission was at first informed that the main from the sede-h ver chrine enterel above the surface of the rememir, wherempen experiments were started with the loge in that thain, hat whilat in (peration, one of the engineers came and Ftatcol thet hent of the pmapage of that envine went inte the standpipe anl cotered at the bottom of the reowerir. In half

 colutio.

 remt 14 whinh is vival in Table XVIII.

116

§ 45. CHESTNUT HILL, WATER-WORKS.

These works consist of a horizontal steam engine and pump of a capacity of 374,400 grallons per 24 hours, and also a Knowles' Donkey pump which is kept in reserve. The water is pumped from an artesian well into a tower of very small capacity, from which Chestnut Hill is supplied ; and the present demand being smaller than the capacity of the pumps, the engine is run only half the time or every other hour. The surplus power of this engine could be used for supplying that part of Mt. Airy which has as yet now water facilitics.

In the dry seazon, when the artesim well gives ont, water is supplied to it by a main from Mrt. Airy reserwoir.

§ 46. ROXBOROUGH WATER-WORKS.

On November 22 your Comminsinn visited the Roxhorough Steam Pumping Works, with the intention to ingnire into the feasibility of making experiments on the actual pumprage and delivery into the reservenir; and alson, in obedieneer to your instruction, to examine the stam boilers and their cemomy in frel.

On explaining to the engineer of the works onr object and desire, he replied that he knew that such inve-tigations were going on at the different water-worke, but had no official notice to that effect from the Chidf. The engincer, evidently experting our object to be sanctioned lyy the Chieff, promised to let us make the experiment of the pumpage the next day.

Your Commision then made a preliminary examination of the boilers, which are of French pattern known as Blephent boilers, similar to thene it I'elmont, which are dereribed and illustrated on prage 113.

A prometer was inserted in the flue leading from the boilers to the chimmey, and in less thon one minuta it rose to ne 0 deurees Falireaheit, which was the highest reading on the seale, but evidently not high enomgh for the temperature in the flue. The steam pres-ure varied between te and 50 pounds to the square inch, which corresponds to a temperature of 292.58 degrees and

 the grite, viry ing betwe in 12 end 15 in lee, and very large (on) anel.
 stron por minum, Whicin make the pumprot alout $\overline{5}, 590,000$ gatloms |ur 24 hanr: without leahase

 and instmmente, arivel at the Roxhmoth Water-Wions at
 the worle, that he had receiteal ordens "net to allow any" experinmetr to be mule withont -p.ait permi-aion fiom the Chicf." Fome (ommisain thempon remmed with the neat train to Phitwhopliat.

At nom the mac doy, ome nember of your 'ommi-sion called (In the Chif limginer at the Water Inputament, to ank perwissimb to mhe the experiment at Rexbenongh, which was dectiin 1.

Your (ommesion ap ed that the (hif' had given onders
 and after hatier made experments at Delmont and R.haylkill Norke, and preliminary examinations at the Delaware |lomk; onr member of yonr (ommis-ion related the same to the (hief in his wfice at Faimement, when he sermed pleatel with nur lahor, and akel how we were treated at the difternt works. The answer wats, that we had been treated with great kindness at all the works withont exception. Yone Commis-ion then folt confilent that the examination went on harmonion:ly with the Water Department, and therefore aroided troubling the Chief by asking special permi-sion for each act. Now, your Commission suspects that it has committed an error, and owes apology to the Chief Engineer for not having asked permission in every instance.

§ 47. DELAWARE WATER-WORKS.

The Delaware Works and Reservoir were visitel on the 15 th of November, for preliminary examination and preparation for experiments on the pumpare, delivery an! leakage.

The water was rery low in the reservoir, and very little water cuterel from the 3 ; inth inlat. Thare are oaly two man from the works to the reservoir, one 18 inch, whels is tuppeal ous the way for supplying the lower part of Fensington, and also Bridesinurg. This main enters the reervoir, in two limenem, at the bottom. The other is a 36 inch main, entering the reservoir through a standpipe projeeting ower the surface of the water. The delivery from this standpipe celn be meatimed with gieat precision by the log.

On the 10th of December, one of the planger heads of the Worthington engine at the Delaware Works beoke, and di iahleal - its working.

LETYER TO THE CHIEF ENGINEER.
 Philadelphia, Nor. 20, 1878.

Dr. Wy. H. Mcraddex,
 Chicf Engineer Water Department.

Sis:-I would respectfully ask permissiou to measure the pumpage of the Delaware Works into the reservoir, by placing a \log in the inlet of the 36 inch main.

For this measurement, it wonld be necessary to let all the pumpage into the 36 inch main, and stop the 18 inch main at the stand pipe.

The supply for distribution from the 18 inch main wonld then be taken from the reservoir, by opening the valves* at the upper stop-liouse.

The experiment will not last more than one hour, at any time convenient to you and for the operation of the works.

Awaiting your favorable reply, I remain
Yours Respectfully,
JOHN W. NYSTROM.

[^1]REPLA FROM TIE WATER DEPARTMENT Received Vurember 22.

II -

Jomin W. Nrmens, C. E.
My Deale Sis: - Yomen of the 2oth int. in at hame. The Chicf directsme tusy that vomer requet can he complied with.

$$
\begin{aligned}
& \text { Yonr-, de:, } \\
& \text { CHARIES (:I) IRIRMCH, } \\
& \text { A wistant Finginem IV. I). }
\end{aligned}
$$

> A sECOND THOUCHIT.
> Rectied Nors. シ3.

> Water Depalmonat. Phoaberpho, Nov. 23, 187 .

Jome W. Nystrom, C. E.
Dear ine:-The request cmbated in the commmication pre-ented bey you to the Committee on Wrater-Worlas, Oct. 15, 187s, was to make some mea-mremente and experiments at Fairmount.

If you de-ire to extend yomr experiments heyond that point, permiswion must first be oltained from the Committere.

$$
\begin{aligned}
& \text { Yours Truly, } \\
& \qquad \text { L. T. IHCKMAN, } \\
& \text { Asistant Clerk. }
\end{aligned}
$$

§48. REMARKS.

Up to the time this notiee was received, your Commission has made preliminary examinations of all the C'ity Stem Works, exeept those at Frankford, where only a Worthington 2,000,000 gallon engine is working ; the Cramp's $10,000,000$ gallon engine being under repair.

Now your Commission will not be able to carry out your instruction about the steam pumping machinery, for want of permis-ion from the Water Committec of City Compeils.

The enndition upon which the Chief Engineer requires an application for permission to be made is of such a nature, that the Water Committee could not be expected to grant the same.

$$
\text { Philadelpiia, Dec. 5, } 1878 .
$$

Dr. William H. McFadien, Chief Engineer Water Department:

Sir:-The Commission appointed by James Itaworth, Feq., which was authorized by the Water Committee of Commeile, atd yourself, to make measurements and experiments at the lairmount Water-Works, has conchuled the same, and returns to you - and to the engineers at the Works, the most sineere thanks for the execptional limdness realize! in that comnecion.

In default of a like permission of the Water Committee, the - City Steam Works have not been examined as desired.

Mr. Haworth is indi-posed to make to the Committee such an application as you required, namely, to "as.ame all respensibility for injurios that might befall the machinery experimenterl upon," on the gromed that it wonld mudoubtedly imprese the Committee with the erroneous idea that there would be some probable or possible risk.

The Water Committee would not be likely to grant the required permission upon an application conched in such terms.

Copies of the Report of our investigation shall be sent to you as soon as ready for distribution.

I have the honor to be, Your Obedient Scrvant, JOHN W. NYSTROM.

CAPACITY OF THE WATER-WORKS.

\&40."What is the theoretical and proctical capacity of each abel of all the Water-Works in Philadelphia?"

The following two tables represent the theoretical and practical (apmeity of ead and of all the Works.

The leakage of the pampsest faimomat averages 25 per eent. at the reerular -pred of the turbines, which amount has been dedneted from the theoretieal apacity, and the remainder assumad to be the practical (apacity of the pump):

At Bedmont, the leakatre wats fumbl by the \log to be 39 per cent.

At the other Wrorks, the leakige has not been measured, but assimed to be 25 per cent.

Theoretical cupacity of :all the Worki, $127,012,288$ gallons per
24 hours.
Practicall capacity \quad." $90,561,000$ gallons per
24 hours.

ACTUAL (ONSUMJTION OF WATER IN PHHLADELPIIA.

850. "What is the actual arerrage dreily consumption of Wiater in I'hiladelphia:"

Dehnct $: 30$ pere eont. from the arerage dail? pumpage as given in the W. 1). Report, and the remainder will lee a close approximation to the actual consmuption.

Table X 1 X , page 121 , gives the average daily consimption of water in Philadelphia for every month in four years.

Asoming the population of ' 'hiladelphia to be 820,000 , consuming, on an average, $34,300,000$ gallons per day, will make 42 gallons, or one barrel per head.

TABLE XLス．

Actual Dafiy Average Consumition in Gallons．

Years．	1874	1875	1876	1874
Jenuary	25，000，000	$23,000,000$	25，750，000	28，700，000
February	24，900，000	25，300，000	25，400，000	29，200，000
March	24，600，000	26，200，000	26，2．50，000	30，000，000
April	26，500，000	$27,000,000$	30，2－50，000	31，500，000
May	31，200，000	3：5，500，000	$34,700,000$	$31,700,000$
June	35，2．50，（000	36，000，0010	39，000，000	37，300，000
July	$38,000,000$	35，000，000	40，000，000	37，600，000
A urust	33，750，000	35，400，000	40，090，000	39，200，000
Soptember	32，200，000	$31,700,000$	39，000，000	38，500，000
October	$29,200,000$	32，000，000	$38,000,000$	37，200，000
November	28，000，000	$30,700,000$	34，000，000	35，200，000
December	2．5，200，0010	28．200，000	29，000，000	32，700，000
A verage	29，500，000	33，350，000	43，400，000	34，300，000

HゾDROGRAPIV OF THE WISS，IHICKON．

851．＂To what extent can the Wissahickion be depended upon for supplying Lioxborough and Germentown with Water by Water－Power？＂

The Report of the Water Deprartment for 1866，page 12，in the Appendix，say：：that＂Water for sumplying the city could be oltained at sufficient elevation ten miles above the month of the creek，and thirteen miles north of Broad and Market Streets．＂＂Ahove this point，the ereck has a surface drainage of fort r －four equare miles．＂

The drainage area above Bischoff＇s mill，six miles from the Schulkill，is about 55 square miles，and with an ammal rainfall of 46.5 inches，which，at 60 per cent．available，say 28 inches， will make $26,87: 3,259,600$ gallons per amum，there would be a daily average of $73,766,000$ gallons．

Suppose the Wissahickon to be dammed up to a 25 feet fall at Bischoff＇s mill，which is 114 feet ahove city datum，the dam
would then be l：3 feet abowe the wat r－work－fereted heme for

 suppore the daty of the water－works to be 5 ）pere cent．，then 18 gallons woulal pusup one into the resplone，patetically．

Sillpere the monthly pereentage of asalahle manfall to loe as
 oul all ：Nemare，as in the following Tahks．

T．NBLE XX．

 2．）Feber Fial．

M notlis		1 hours l＇（11．1）－Intis lat a ruoir	－	I verage dail！ fumparer at 1：nx．．．．Work 18\％．
Jamuar		$\begin{gathered} \text { 'i, flume } \\ \text { (i, 16:1,0)0 } \end{gathered}$	$\begin{gathered} I^{\prime} \\ \therefore 2 \end{gathered}$	$\begin{array}{r} \text { (allens } \\ \because, 20.5 .: 1 \end{array}$
Fehnurive	$107,000 .(10)$	S，（1）30， 000	－10：3	ソ．こ $41,7,70$
Ward	9）T，（0）0，（\％）0	S． 3 3）（1），000）	1.9	$2,(0) 5.5,(0): 3$
Ipril	81，000，0010	1．501，00）	：3心．	$2,0!11,911$
M：1	（il，1010，000）	$8,5 \cdot 50,(100$	302	$\because, 174,669$
Tune	$1!1100.000$	：3，7－2．），（0，¢（	－引	
July	：3！，B？ 0 ，（1）00	$2.185,1000$	$1 \times .5$	$\because, 185,376$
Juブルーt	B（b，！0），000）	$2,(1) 00,1000$	$17: 3$	$\therefore, 1: 31, N(1)$
Scpember	$13,000.00019$	$2,3: 9(1),(0)(1)$	$\because 12$	$\therefore 2.2$ 2， 196
O）－twher	（il，（1）0，（1）19	：3，5．．）， 11010	$\therefore 0 \cdot 2$	$\because, 9101,(9)$
November	Sx．（0），0）（0）	1，s？ 90,0000	117	$2,430,1: 32$
D）ember	1（11，5）！）！0！	－，¢50，（1）0	$1!1 \%$	$2,90.5,(10) 6$
－Werame	73， 7166.1600	$1,175,100$	$\therefore 17$	$2,1518,010$

The ahowe Table approvimates the aveme leydrambes of the WVisahickom，withont allownee for dromphe，which would em－ barrans then works like these at lrairmome；but be the aid
of impounding dams and a storage reservoir, their supply could be made more reliable.

The water pumped at the Roxborough Works, as given in the last column, also supplies Manaymuk, which, if deducted from that column, will hring the power of the Wissahickom up to the requirements of Germantown and Roxborough in the summer months.

The plan sugrested by yon, mamely, to build temporary waterworks on the Wissabickon, above the pipe aquednet, and comect them with the inverted syphon deading to Ruxborough and Germ:ntown, deserves consideration.

WISSAHICKON PIPE BRIDGE.

8 52. "When the cost of Steam Phmping here is $\$ 4.5$, curl that of IV'rter-IPower ouly \$: per million g(allons, would it mot luce bem better to hare construrtel water-morlis ou the IVissahirlon with the mone? welled on the Pipe Bridyr"'"
"The cost of replacing the injured pipe int that bridlge is estimerterl, by the Commission of 1575 , ut $x \neq 0,000$. ,
'The pipe atuednet arons the Wristhickon wats completed in the year 1870 (), and est albont $875,49)$..31 , (see liaport for 1870, pages 72 and $7: 3$, and is not now an inverted syphon. The money expended on this pipa aymednet would have paid the gratest pertion of the eost of water-works on the Wixahickon.

REMARKヒ

I have the cuthority of the lete John Agnew, the cargine builder. Vine street, Philadslphier, as to the method of supplying vater to New Brunswick. Thut cit! is supplied by one waterwheel rend pump.s, which are attended by one man. It is selflubriesting, cund only requires his brief uttention in the morning and eveniur. I cite this as an example of what could be done on the IVissahickon and at Mranayunk.

Whencuer the city wishes to utilize all the water in the Wissa－ Hickon，these uorlis stould be removed to a point six miles above the mouth of the Wissethickon，and after supplying Germantown and loo．dorough by water－power，the water used as power，after puassing over the whels，could be bronyld down to the city by grav－ itation．By theso means the Wissahiclion could supply $60,000,000$ gralloms per chay，which is about twice as much as the city is con－ suming at the present time（1878）．

J．H ．

GATES FOR ADMITTING WATER TO THE TUR－ BINES．

\＆53．＂These mulside gretes hreve been liept too low＇，rul thus not relmitterl afull supply of u＇reter to the wheels．Does not this aliminish the refilly hrerel of frell remrl，con－ spqurntl！，the motire jowner：＂，＂

It make very little differemere if the speed of the tumbines is regnlated he the ontside gates or by the cirenlar grate muder them．If theme gites ale left wide 川ren，the wheels will rim too filt，exeept at lighl tide．

The ermor is in the constrmetion of the turblase and size of the pmaps．It is trie that much power is last lyy not admitting the firll head of fall on the wheres at all tides．

> TRANSFLDRKはN゙ THE WITER DEPARTMENT TO A COMPANS．

[^2]Your（ ommission camot answer that question．

REMARKS.

By the general policy I have recommented, 300,000,000 gallons of water could be brought into the City per day, by the employment of water-power at $\$ 2$ per million, including interest on future plant, and by a proper administration of the Department, so,000,000 gallons per chay could and should be used for flushing the gutters and sewers of the City, and promoting the publie Health.

The surphus over the City's consumption could be rented for motive power, to the married advantage of the City Treasury.
J. \boldsymbol{H}.

METALLIC SPRING PACKING OF PUMP-PISTONS.

\$55. "Solid brass pistons without puplsing, but simply fitter in the pumps, are now useal at Fairmount, which must evidently wertron the under side by seraping in the murt, until they leak so bally as to pump no water. Woulal not a metallic spring packing be better, and lieep the piston permanently tight?"

A metallie spring packing maty possibly be devised, that would keep the piston tighter than does the present solid one. In the Worthington pump, a long phanger is fitted in the pumpcylinder withont any packing; it is not known, however, how tight that plunger is, but it must inevitably wear, and finally leak very much.

Your Commission believes that a metallic spring packing could be devised that would keep the piston practically tight, and which would be much preferable to the solid piston which can never be rendered so, even when it is first put in.

PISTON ROD OF IIORIZONTAL PUAPS.

856. "The piston in horizontal pumps, must evidently wear on the umder side, by its own weight on the lower side of the premp. Would it not be allvisable to run the piston rod through at both ends, so as to guide the piston concentrieally with the pump."

It is a very olld idea to rmu the piston rod throngh both ends of horizontal pumps or cylimelers, for the purpose you mention, but experience has proved it to be of little or no value. Horizontal blowing madrines have been so construeted, and found to wear out the stufling-box to greater inembenienee than the wearing of the piston.

The philomply of the cate is as follows:
The weight of the piston has a much greater surface to lay on in the eylinder than in the stuffing-hox; and therefore, if depending upon the latter, it will sooner wear to leak. To overcome this difficulty, varions arrangements have been made in the stuffing-hox for bearing the weight of the piston and rod, and ako, by constructing special gnides for bearing the end of the projecting piston rod. Attempts lave also been made to bear the piston by part of the pressure acting upon it, all of whels have been abandemed, and they now depend npon the wearing of the piston in its cylinder.

The lest method your Commission cau suggest, for the present, is to make a hollow and tight plunger of equal weight to that of the water it displaces, and pack it in the middle of the pmop by a metallie spring packing, which may be arranged so as to tighten it fiom the ontside, whil-t the pmonp is working.

FROM THE PHHLADELPHEA P.APERS, OF DECEML-

 BER 4, 1878.
OUR DEFE(TTIVE WATER-SLPPLY.

The Conncil Committee on Water pricked up its cars yesterday when the derk read the propesition of Mr. Joweph D). Themen to furni-h the city with a supply of fourteen millions of gallons of water per day, at a cont of $\$ 7.93$ per million gallons for cach one hamdred feet high. Mr. Thoraton proposes to ereet a prompingergine at any of the water-works of the city, place in all the necessary madhinery, and talie a contract for six years. It the expiration of that time, the whole of his apparatus reverts to the city.
"The proposition is a fair one," said Chief Engineer McFadden, when his views were asked. "So far as the rate is concerned, it cost in 1876, at Behmont, which is our cheapest pumping station, $\$ 7.14$ to raise water 100 feet high."

At this juncture, the doctor went into an elaborate explanation of the different systems into which the water-supply of the city is divided. He makes it a point, at each meeting of the Committee, to say something on this subject, fearing that some members might forget it. When the Chief drifted back to the matter before the Committee, it was learned that it now cosits but $\$ 6.05$ to pump $1,000,000$ grallons 100 feet high at Belmont; but the average cost for pumping that amount of water the distance named, was $\$ 8.52$. The subject was referred to a sub-committee, who, at Mr. Bardsley's suggestion, will ascertain whether Mr. 'Thornton's plan is meritorious or not, and make a speedy report.

Should the proposition be accepted by the city, it is proposed to utilize the machinery of Mr. Thornton for the purpose of supplying the north-western seetion of the city; ineluding the Fifteenth, Twenty-ninth and Twenty-eighth Wards, where the residents suffer from a paucity of water.

On behalf of the residents of Moment Airy, Mr. Gowen asked for water faceilities, which are now wanting in that lozality, although they are compelled to pay for the mantenance of the system, and the interest on the water loans.

Chief' MeFadden stated, that for $\$ 10,000$ he could ereet the necessary pumping station and standpipe to supply that locality. The department would reeeive $\$ 2000$ per year income, in the way of rents, which he considered af fair investment for the money. He was instructed to incorporate that item in his appropriation for 1879. The Committee then adjourned.

1'hiladelpliia, December 4, 1s\%S.

Gentlowen:

Herewith !gon will vereire all ardide firom the propers of torta!!. repentin! " proposition to Councils lo rularge

 bus mot been relimuted. both by the IV. D. Lieports cllll that
 pere rlo!!!?

Zal. IVheflere ollo-llaff of that allowntllas pier been plumperel b!! strom! :

 stamlliu!g inlle at the s.lu!glliill IVorlis, will wot amsurer as
 pultirulloritirs of this ru!gilu!?

 estillulelet pllollpolge:

> I "III. Joulis Iicsperctjull!!.
J. M JEs HAHORTH.

Mrasis. Nystrom, rla...
Wittr Comminisviou.

§57. ANSWERS TO THE ABOVE QUESTIONS.

1st. In the W. D. Report for the year 187.t, pare 97 , the theoretical eapacity of all the stean works is estimated at $67,082,547$ gallons per $2 t$ hours. Since then, the two Cramp's engines, of $30,000,000$ gallons, have heen adderl, making 97,082,5 17 grallons, their present capacity. The Commission of 1875 made the same estimate, or eopied that in the W. I). Report.

Your Commission also has estimated the theoretical capacity of the steam works at $97,607,017$, and the practical at $68,128,000$ gallons per 24 hours. (Sce Table XVII1, page 123.)
2.1. Table IX, page 77 , gives the average daily pumpage by steam-power for 18 years. Table N , pure 79, gives the average daily pumpage by stemu for every month in four years.

The maximum daily pmonage ley all the stemm worke, as far as your Commission has been able to ascertain, wats reached on one or two oecasions in 1876, when it amometed to about $40,000,000$ galloms, which is below one-half their estimate.

3d. Mr. Thomen is no donbt anare of the extravagant use of coal at the water-works, the saving of which would alone make his contract very profitable.

4th. There appears to be somme mystery about this engine, not known outside of the Water I) epartment. The (dief Engineer advocates increase of stem-power, and fears a water famine, Whilst this new $20,000,000$ gallon engine has been standing idle since it broke, in september last. From the outside of the engine no breakage cau be seen, but it appears to be as sound as when first started, Dec. 20, 1876. The engineer of the works, who speaks well of the engine, says there is only a crack in the easting in the valve-chamber, and that he does not know why it is not repaired. This engine eost the Water Department about $\$ 90,000$, and was to pump $20,000,000$ gallons into the schuylkill reservoir per 24 hours. The contract price for this engine was $\$ 67,000$, and the foundation for it cost $\$ 20,000$.

The dynamie duty of the engine was to be $75,000,000$ footpoinds of work per 100 pounds of eoal consmmed, provided the boilers evaporated at least $9 \frac{1}{2}$ pounds of water per pound of coal.

The perfect combustion of one pound of carbon generates 14,500 mits of heat ; and 772 (Joule) fout-pounds per unit of heat, would make $11,191,000$ foot-pounds of work per pound of carbon consumed. Allowing 74 per eent, of carlon in the coal, the duty now required of the engine is only 9 per cent. of the natural effeet of the coal consumed, according to Joule's equivalent.

I forty-cight homrs' trial of this engine was made, commencing Dec. 20, 1876, the results of which are partly taloulated in the W. I. Report for that year, withont giving the pumpage, or any detailed deseription of the experiment, nor sirnature of the experimenters, who are manown to the pmblie.

Their tabulated data indieate that the experiments must evidently have been made by inexperienced men.

Your Commision dnes not knew what kind of engine Mr. Thornton proposes to introduce at the water-works, and can not therefore compare it with that of Mr. Cramp. There are varions condicting opinions given on the Cramp engine hy parties who pretomed to haow, but nome that could he aceepted for this Report.

Come Commision has seron the engiue in operation, and it appeared to work very well, but cammot give a deflinite opinion on the sma withont a thomong examination, which could not be made, for want of permis-ion from the Water I Cprement.

5th. The enntrol of the Resister (on Comerer) lis the contractor, wonld pmaibly, or probable, not protert the interent of the city. (Sire * prage 2s.)

Gith. Mr. Thoment proposition is very clear on this point, namely, 5.93 per mitlion gatlons promped $1(0)$ feet high, which makes $\$ 16.81$ at Belmont, 89.12 at S.dnylkill, $\$ 29$ at Ruxborongh, and \$9.07 at the Delaware resurvirc.
ith, Mr. Thornton's prepesition appears to be that he rmens onls the enrine fiminished ly himedf, whilet the other engines in the same works are run ly the Water Department, which arrangement would madonbtedly open very serions oljections; but if Mr. T. leases the whole works, it may be advantageous to the city, and so, also, the lease of all the water-works, to a private and responsible company.

RECOMMENDATIONS BY YOUR COMMISSION FOR IMPROVCNG THE FAIRMOUNT WATER-WORKS.

The examination of the Fairmomnt Water-Works, as deseribed in this report, has made your Commis-ion so eonversant with its, operations as to be able and justified in recommending the following improvements for inereasing the capacity of the same.

First. 'To alter the form of the buckets in the guides and wheel of turbines Nos. 3 and 5, (No. 4 is now being altered to the Duplex Automatic Adjustable pattern,) so as to utilize the maximum effect of the water-fill at mean low tide.

Second. To enlarge the pumps to suit the alteration first recommended:
N. B. The first reeommendation can be accomplished without the second, that is, the buekets in the guides and wheel can be so constructed as to utilize the best effect with the present pumps; but then it will take only half the quantity of water now used for the same pumpage; but as the demand for water is now inereasing, it is better to enlarge the pumps, and construct the guides and wheel aceordingly.

Third. To connect all the pumps, by mains, with both the Fairmount and Corinthian reservoir: so as to throw all the pumpage into the higher level during low tide, and to the lower level at high tide.

Fourth. To construet such valves for leading the pumpage to the different reservoirs, that they conld be opened or elosed in a minute or less ; which can easily be aceomplished.

The present valves require about half an hour to open or elose.

Fiflh. 'I's raise the Corinthian reservoir 12 feet, so as to make the proportion of lift into the two reacroirs equal to the proportion of head of fall at mean high and low tides.
Hearl of fall at me:n high ticle,
"، "
"
"

Lift into the Fairmonnt reservoir, - - 90 "

$$
10: 11=90: x . \quad x \quad 126 \text { feet }
$$

The lift into the Corinthian reservoir should be 126 feet.
The misine of the Corinthisur reseoir about 12 feet, wonld acomplish two important advantages, mamely :

1. It wonhl enable the Faimomut Works to utilize the maximume flere of the water-fall at any lieight of tide, and thus increase its phmping eapacity.
2. It would enahle the ('orinthian reservoir to distribute its water to that mumbligher levels, and to smply more water to Kensington, and even to Frankford.

The size of the pumps, and eonstruetion of the buckets, should be so proportioned as to utilize the maximum effeet of the waterfall both at mean low and mean hight tides.

Six.th. To erect a Wrater-l'ressure Ehegine in the varant space No. fo, commerted so as to pump into the ('orinthian at low tide, aurl into the l'ilimoment reservoir at high tide.

After the first water-presure engine hats proven a success, a second one shonled he erected for No. 2.

In cate the above recommendations are eamied ont, it may be fomed expertient to alter alon the wheek and primpe in the new whed-lonse, amd the capacity of the Faimomit Water-Works wombl thas le more than dombled, and the ruminer expenses pere million gatlons pumped, would be deepeased in the same proportion.

> JOHN W. NLSTROM, W. B.IRNEI IF VAN, WHLIAM DENNISON,

Philadelphia, Dec. 30, 1878.
?

[^0]: * Top of the old comb, which is 4 feet 9 inches above City datum.

[^1]: * On the $23 d$ of November, the Chief sail that these valves are always open, but his assistant had previously declared they were closed.

[^2]: \＆5．1．＂Would it mot be best to give the Wrater Deprertment in charge of＂Compumy？

